

Study the Change in Hydrological Conditions for the Azraq Basin using Incremental Climate Change Scenarios: A Soil and Water Assessment Model and Geospatial Techniques

Atef Ghumaid*

Northeastern Badia Education Directorate, Jordan.

https://doi.org/10.35516/hum. v49i3.1336

Received: 22/11/2020 Revised: 31/12/2020 Accepted: 7/4/2021 Published: 15/5/2022

* Corresponding author: atef05969@gmail.com

Abstract

The study aims to Demonstrate the effect of the change in the Hydrological Conditions for the Azraq basin using the incremental scenarios method, the soil and water assessment mode, and geospatial technologies to support the water management plans for the basin, making the most of the available water resources in the basin, building it as a hydrological database through the availability of climatic and hydrological data available by the jordanian meteorological department and the ministry of water and irrigation. in addition to facing future challenges in light of potential climate change, whether positive towards increasing rates of height and the prevail of wet conditions, or negative towards decreasing precipitation rates and thus, prevail dry conditions. Study results show that the Azraq basin receives an average of 99.8 mm / year rainfall, which loses the greater part of through evaporation process, as 73.8% of the total precipitation is wasted as a result of the actual evaporation process, while the surface runoff accounts for 8.9% of the total rainfall on the Azraq basin. as the study showed, 11.4% of the amounts of precipitation received by the Azraq basin go to what is known as the water yield (blue water). The recommendations were; focusing on the necessity of intensifying the reliance on the model of soil and water assessment and geospatial techniques in surface hydrological modeling processes for basins; as it has proven the effectiveness and efficiency of the results given in the water management of water basins, whether in the current or future reality.

Keywords: Soil and Water Assessment Model; Al-Azraq basin; Water Management; GIS; Hydrological Conditions; Incremental Scenarios; Climate Change.

دراسة التغير في الظروف الهيدرولوجية لحوض الأزرق باستخدام سيناربوهات التغير المناخى التراكمية ونموذج تقييم التربة والماء والتقنيات الجيومكانية

عاطف الغميض*

مديرية تربية البادية الشمالية الشرقية، الأردن.

ملخّص

تهدف هذه الدراسة إلى توضيح أثر التغير في الظروف الهيدرولوجية لحوض الأزرق باستخدام أسلوب السيناربوهات التدريجية (Incremental Scenarios) ونموذج تقيم التربة والمياه والتقنيات الجيومكانية) نظم المعلومات الجغرافية (GIS)؛ وذلك لأغراض دعم خطط الإدارة المائية للحوض، والاستفادة القصوى من الموارد المائية المتوافرة في الحوض، وبناء قاعدة بيانات هيدرولوجية للحوض من خلال توفر البيانات المناخية والهيدرولوجية المتاحة من قبل دائرة الأرصاد الجوبة الأردنية ووزارة المياه والري .بالإضافة إلى مواجهة التحديات المستقبلية في ضوء التغير المناخي المحتمل سواء كان إيجابي نحو زبادة معدلات الطول وسيادة الظروف الرطبة، أو سلبي نحو تناقص معدلات الهطول وبالتالي تسود الظروف الجافة .وتوصلت الدراسة إلى أن حوض الأزرق يتلقى معدل مطري 99.8 ملم / سنوبًا، يُفقد الجزء الأعظم منها بواسطة عملية التبخر، حيث أن 73.8% من مجمل الهطول المطرى يذهب سدى نتيجة علمية التبخر الفعلى، في حين أن الجربان السطحي يستأثر بـ 8.9% من إجمالي الهطول المطري على حوض الأزرق .كما أوضحت الدراسة أن \$11.4 من كميات الهطول المطري التي يتلقاه حوض الأزرق تذهب لما يعرف بالناتج المائي) المياه الزرقاء .(وتوصى الدراسة بضرورة تكثيف الاعتماد على نموذج تقييم التربة والمياه والتقنيات الجيومكانية في عمليات النمذجة الميدرولوجية السطحية للأحواض؛ لما أثبته من فاعلية وكفاءة النتائج المعطاة منه في الإدارة المائية للأحواض المائية سواء في الواقع الحالي أو المستقبلي. الكلمات الدالة :نموذج تقييم التربة والمياه، حوض الأزرق، الإدارة المائية، نظم المعلومات الجغرافية، الظروف الهيدرولوجية،

السيناربوهات التراكمية، التغير المناخي.

المقدّمة

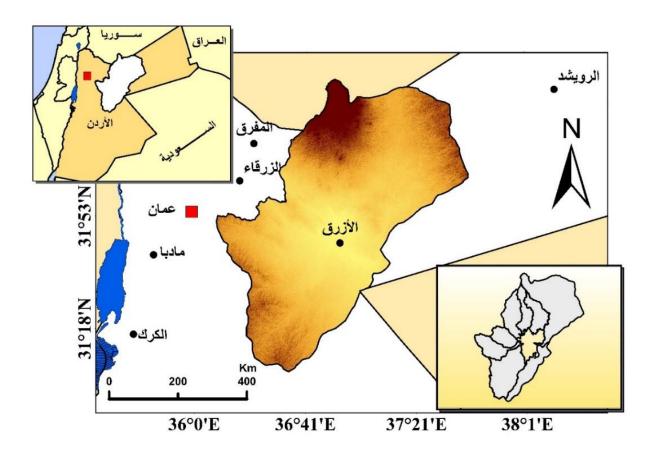
يُعدُّ التغير المناخي من القضايا التي تحظى بالاهتمام، وتشغل فكر الباحثين وصناع القرار على مختلف المستويات المحلية والإقليمية والعالمية؛ لما لمن ارتباط وثيق بحياة الإنسان. ويتجلى هذا الاهتمام بصورة واضحة من خلال التركيز على الارتباط الوثيق بين التغير المناخي والظروف الهيدرولوجية والموارد المائية، سواء أكان هذا الارتباط ذا اثر إيجابي علها من حيث زيادة كمية التهاطل، أو سلبي من خلال تناقص كميات التهاطل السنوي. كما يتضح الاهتمام بأثر التغير المناخي على الموارد المائية من خلال ارتباطه بمصدر القوت اليومي للإنسان، ومن خلال تأثير المباشر على النبات الطبيعي، وغير المباشر على الكائنات الحية (الغميض، 2019).

وعلى الرغم من الاهتمام المتنامي بالتغير المناخي وتأثيراته والمتمثل بالمؤتمرات والندوات والأبحاث والتقارير وإنشاء هيئات تعنى به؛ كالفريق الحكومي الدولي المعني بالتغير المناخي (IPCC)، إلا أنه لا يوجد اتفاق بين العلماء والباحثين على آلية التغير المناخي المتوقع، مما يزيد من الغموض الذي يكتنف مستقبل الأرض وقاطنها، فبعض العلماء يتجه نحو أنَّ الأرض سوف تشهد تشكل عصر جليدي، في حين يرى القسم الآخر من العلماء أن الاحترار العالمي قادم لا محالة. ولا يقتصر الاختلاف بين العلماء على كيفية حدوث التغير المناخي المتوقع، وإنما يتعدى إلى آثار النشاط البشري عليه؛ فقد انقسم العلماء بين معارض ومناصر لأثر النشاطات البشرية على التغير المناخي.

ويعدُّ الأردن من البلدان محدودة الموارد المائية إن لم يكن أفقرها؛ بحكم الظروف الهيدرولوجية والمناخية المتواجدة في الأردن، حيث إنه يعدُّ البلد الثاني في العالم من حيث القصور في توافر الموارد المائية (Al-Hassani,2018)، حيث يبلغ حجم الموارد المائية المتاحة في الأردن 800 مليون 6 ، في حين أن الطلب على تلك الموارد يبلغ 1100 مليون 6 والمتوقع أن يزداد الطلب عليه بحلول عام 2020م إلى 1400 مليون 6 (العمري، 2017). ويعزى هذا التزايد في الطلب على الموارد المائية بالدرجة الأولى إلى الزيادة السكانية بنوعها: الطبيعية منها وغير الطبيعية الناجمة عن حركات نزوح اللاجئين إلى بلد يعاني أصلاً من صعوبة توفير تلك الموارد لمواطنيه، بحكم العوامل الطبيعية الأخرى، مثل: وقوعه ضمن سيادة المناخ الجاف، وشبه الجاف التي تتصف بقلة أمطارها، وتذبذها وانتشارها على شكل بقعي.

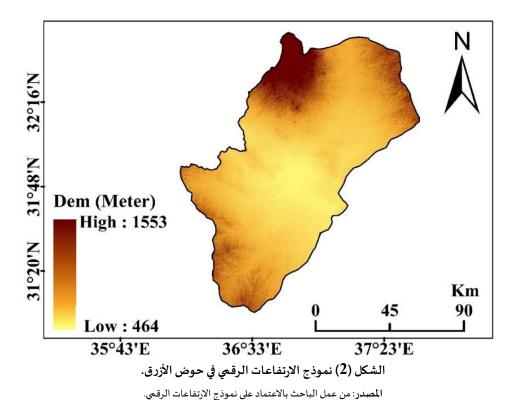
وتتمحور مشكلة الدراسة وأهميتها في أن حوض الأزرق يُعدُّ أحد الأحواض المائية الرئيسة في الأردن، والواقع في الجزء الشمالي الشرقي منه، كما يعدّ الحوض المورد الأساسي لتزويد التجمعات السكانية الكبرى الرئيسة في الأردن، وهي العاصمة عمان والزرقاء واربد، وأنّ تكثيف الاعتماد المائي على هذا الحوض تجاوز الحدود الآمنة للإنتاج المائي الجوفي، وبالتالي أصبح من أكثر الأحواض استنزافاً لموارده المائية؛ بسبب الإفراط في الضخ بأسلوب جائر، مما أدى إلى التأثير على نوعية وكمية مياه الحوض. كما ترافق هذا الاستنزاف مع ظهور مشاكل بيئية أخرى مثل: تدهور الأراضي بسبب سوء استعمالها، أو التضارب الكبير بين الاستعمالات المختلفة؛ مما أدى إلى إحداث اختلال في التوازن البيئي ضمن أراضي هذا الحوض (النوايسة، 2017).

وتتركز أهداف الدراسة في التعرف على الظروف الهيدرولوجية الحالية والموارد المائية السطحية والباطنية (الجوفية) لحوض الأزرق. كما تهدف الدراسة إلى توضيح أثر التغير المناخي المتوقع على الظروف الهيدرولوجية والموارد المائية السطحية في حوض الأزرق باستخدام طريقة السيناريوهات التراكمية في منطقة تشهد أصلاً تناقصًا حادًا في الموارد المائية بسبب استنزافها بواسطة الضخ الجائر لها، من حيث معرفة مدى الأثر المتوقع لذلك التغير الموارد المائية، سواء كان هذا التغير إيجابيًا بزيادة كمياتها، أو سلبيًا بتناقص مواردها.


وقد اعتمدت الدراسة في معالجها لموضوع تحليل التغير في الظروف الهيدرولوجية نتيجة التغير المناخي المتوقع في حوض الأزرق على التحقق من صحة افتراضين مهمين؛ هما: 1) لن يكون هنالك تأثير للتغير المناخي المحتمل على الظروف الهيدرولوجية والموارد المائية في حوض الأزرق. 2) ازدياد مساحة المناطق الأكثر مطرًا لصالح المناطق الجافة.

ومن الدراسات التي تناولت حوض الأزرق دراسة الملكاوي (1997)، والتي تهدف إلى تعديد مناطق التصعر في منطقة حوض الأزرق الماني باستغدام تقنيات الاستشعار عن بعد، ونظام المعلومات الجغرافية، وقد تم استغدام صور لاندسات TM وMSS في تاريخين مختلفين، وذلك عامي 1997، إضافة على المعلومات المتوفرة عن الحوض لدراسة التغير الحاصل بين التاريخين، وقد توصل الباحث إلى تحديد مناطق؛ لتنميتها كمراعي أو مناطق زراعية بواسطة الري. وتناول أبو عجمية (1999) دراسة التعولات السكانية والتغيرات البيئية في واحة الأزرق؛ بهدف تتبع التغيرات البيئية، مناطق زراعية بواسطة الري. وتناول أبو عجمية (1999) دراسة التحولات السكانية والتغيرات البيئية في واحة الأزرق؛ بهدف تتبع التغيرات المضاحبة له في واحة الأزرق تعود بشكل أساسي إلى استنزاف الموارد المائية بسبب الضغ الجائر للمياه. كما قام (2012) Jaber (2012) بتقييم آثار التغير المناخي على الموارد المائية في حوض الموجب مستخدمًا أداة تقييم التربة والمياه، وأسلوب سيناريوهات العافة إلى انخفاض الجريان السطعي بمعدل 10% - 30% عندما ترتفع درجة الحرارة بمعدل 1 درجات مئوية، في حين تشير السيناريوهات الرطبة إلى زيادة الجريان السطعي بأكثر من ثلاثة أضعاف الجريان السطعي الحالي. وقد عملت - Al إلى 4 درجات مئوية، في حين تشير السيناريوهات الأمطار الشهرية والسنوية في حوض الزرق خلال الفترة الممتدة ما بين 1980 و 2016، وتوصلت إلى وجود اختلافات وتباين كبير في كميات الأمطار الشهرية والسنوية. كما حاول (2017) في دراستها على تقدير التباين المكاني لكمية الأمطار الشهرية والسنوية. كما حاول (2017) المستخدام أداة تقييم التربة والمياه في حوض وادي شليف، وخُلصَ إلى ازدياد حجم الرواسب السنوي في الحوض؛ نتيجة ازدياد كمية الجربان والانجراف باستخدام أداة تقييم التربة والمياه في حوض وادي شليف، وخُلصَ إلى ازدياد حجم الرواسب السنوي في الحوض؛ نتيجة ازدياد كمية الجربان والمياد وفي مقياس كعي للتصريف

السطحي فيه عما سبق. وعمل النوايسة (2017) على تحليل وتصنيف الخصائص المورفومترية لحوض الأزرق، باستخدام نظم المعلومات الجغرافية؛ لأغراض دعم خطط إدارته من الناحية البيئية المتكاملة، وتوصل إلى وجود أربعة عوامل وأنماط حوضية تتجمع حولها المتغيرات المورفومترية، لذا أوصى لأغراض دعم خطط إدارته من الناحية البيئية المتكاملة، وتوصل إلى وجود أربعة عوامل وأنماط حوضية تتجمع حولها المتغيرات المحوض. وقد درس Al-Hassani بضرورة اعتبار الحوض المائي، وحدة أساسية تمثل أفضل الوحدات لإجراء تصنيف لأغراض تطوير، وإدارة أراضي الحوض. وقد درس 2018) (2018) التأثيرات المحتملة للتغير المناخي على مصادر المياه السطحية في حوض عمان الزرقاء باستخدام نموذج الدوران الإقليمي المقلص، وأداة تقييم التربة والمياه، وتوصل إلى أنه من المتوقع الانخفاض في كل من: كميات الهطول المطري ما بين 3.7% و20.7%، والجريان السطحية أو الجوفية ضمن أربعة الناتج المائي 21.5% و4.1%. كما قام الغميض (2019) بدراسة أثر التغير المناخي المتوقع على الموارد المائية سواء السطحية أو الجوفية ضمن أربعة أحواض مائية في الأردن باستخدام نظم المعلومات الجغرافية والاستشعار عن بعد، وأظهر فيها أنه من المتوقع انخفاض الجربان السطعي لعينة الأحواض المائية المختارة.


الخصائص الطبيعية لمنطقة الدراسة.

يقع حوض الأزرق في الجانب الشمالي الشرقي من البادية الأردنية، وتترامى جوانبه على الهضبة الجيرية بين خطي طول "25 '9 °36 و "9 '90 و "70 شرقاً، ودرجتي عرض "11 '4 °31 و "14 '91 °32 شمالاً. وتبلغ مساحة حوض الأزرق حوالي 12528.7 كم 2 بدخل بامتداده الواسع الأراضي السورية من الجهات الشمالية بمقدار بلغ 6% من المساحة الإجمالية للحوض، في المرتفعات العالية، التي يزيد ارتفاعها عن 1500 م عن سطح البحر في جبل العرب، بينما يحد حوض السرحان حوض الأزرق من الامتداد داخل الأراضي السعودية، حيث لا يمتد سوى 1 % داخل الأراضي السعودية متخذًا شكلاً شبه مستدير، أي أن جل مساحة الحوض تتركز في الأردن بنسبة بلغت 93 من إجمالي مساحته. ويحد حدود تقسيم مياه حوض الأزرق، حدود تقسيم مياه كل من الأحواض التالية وهي: الحماد من الجهة الشرقية والسرحان، والموجب من الجهة الجنوبية والشرقية في الجانب الأردني. ويوضح الشكل (1) موقع منطقة الدراسة.

الشكل (1) موقع منطقة الدراسة. المصدر: من عمل الباحث بالاعتماد على الخرائط الطبوغرافية، المركز الجغرافي

وتقع غالبية التجمعات السكانية في وسط حوض الأزرق عند أدنى ارتفاعاته عن سطح البحر 500م، بما يطلق عليه القاع Qa'a أو أراضي السبخة وتقع غالبية التجمعات السكانية في وسط حوض الأزرق عند أدنى ارتفاعاته عن سطح البحر 500م، بما يطلق عليه الحوض لأربع محافظات هي: Sabkhah وتتبع إداريا لمحافظة الزرقاء، وتقع على بعد حوالي 2010م شرقي العاصمة عمان، والزرقاء، والمفرق، ومعان (النوايسة، 2017). ويُعدُّ حوض الأزرق من الأحواض التي تشهد انسجامًا وتماثلاً تضاريسيًا وطبوغرافيًا؛ حيث تتراوح مناسيب الارتفاعات فيه بين 1553م و464م، أي أن تضرس لحوض الأزرق بلغ 1089م، وهي التي تشكل 4.1%، والتي تشير إلى أن حوض الأزرق ذو تضرسٍ قليلٍ؛ وذلك بحكم اتساع مساحة أراضي الحوض، حيث أن نسبة التضرس تتناسب عكسيًا مع مساحة الحوض. كما يبين المعامل الهبسومتري لحوض الأزرق أنه يمر بمرحلة الشيخوخة، حيث بلغت قيمته 24.2%، والتي بدورها تشير إلى ضعف النشاط الحتي للوادي، وتعرض معظم أراضية لعميلة الحت، الأمر الذي يؤكد على التماثل التضاريسي والطبوغرافي لأراضيه. ويشير الشكل (2) إلى المنحنى الهبسومتري لحوض الأزرق.

الشكل (3) المنحنى والتكامل الهبسومتري لحوض الأزرق. المصدر: من عمل الباحث بالاعتماد على نموذج الارتفاعات الرقعي.

وبحسب تصنيف كوبن؛ فإنّ حوض وادي الأزرق يخضع لسيادة المناخ الجاف بنمطية الحار والبارد، والمناخ شبه الجاف بنمطية البارد والحار. وبحسب تصنيف كوبن؛ فإنّ حوض وادي الأزرق يخضع لسيادة المناخ الجاف بنمطية البارد والحارة السنوي في محطتي ويتواجد في أراضي الحوض محطتين تابعتين لدائرة الأرصاد الجوية، وهما: الصفاوي والأزرق الجنوبي، حيث يبلغ معدل درجة الحرارة السنوي في محطتي الصفاوي والأزرق العنام 2019م. أما بالنسبة لكميات الأمطار؛ فهي لا تشهد تباينًا بين أجزائه المختلفة؛ فقد بلغ مجموع كميات الأمطار الهاطلة في محطتي الصفاوي والأزرق الجنوبي خلال عام 2019م على الترتيب 89.1 ملم/ سنويًا و88.9 ملم/ سنويًا (دائرة الأرصاد الجوية، 2019م).

وتنتشر في أراضي حوض الأرزق ثلاث أنواع من التربة، وهي: الطينية والرملية والغرينية، إلاّ أنّ التربة الغرينية هي الأوسع انتشارًا في أراضي الحوض، وهي موزعة على صنفين رئيسين، هما: الغرين الغني بالطفل الطيني وهو الأكثر انتشارًا بنسبة بلغت نسبة انتشاره 92.5% من مجمل مساحة الحوض، والغرين الغني بالطفل، والتي بلغت نسبة انتشاره 90.1% من مجمل مساحة الحوض. ثم تأتي التربة الميلية بنسبة بنسبة انتشار بلغت 7%، وتركزت في الجزء الشرقي من الحوض، مع وجود امتدادٍ شريطيٍ في الجزء الشمالي الغربي منه. وأخيرًا التربة الطينية، وهي الأقل انتشارًا في حوض الأزرق بنسبة بلغت 0.5% من إجمالي مساحته، وتركزت في أقصى الطرف الجنوبي الشرقي على شكل أشرطهٍ طولية، وببين الشكل (4) أنواع الترب المنتشرة في حوض الأزرق.

المصدر: من عمل الباحث بالاعتماد على المشروع الوطني لخارطة التربة واستعمالات الأراضي، 1993

تعد الخصائص الجيولوجية لحوض الأزرق مسؤولاً رئيسًا عن تطور مورفولوجية سطحه، حيث عملت كل من الصدوع والتراكيب الجيولوجية وتطورها التاريخي وأنواع الصخور على إعادة تشكيل شبكة المجاري المائية في الحوض (النوايسه، 2017). ويتواجد في حوض الأزرق عدة تكوينات جيولوجية، وينتشر تكوين البازلت هو الطاغي في الجزء الشمالي من الحوض، والذي تكون أثناء فترة النشاط البركاني في الميوسين. ثم يأتي تكوين الشلالة Shallala (B5) والمتكون من الحوض. وأما الأجزاء الغربية من الحوض؛ فينتشر تكوين أم الرجام (B4) Rijam والمتكون من الصخر العبري. وأما الأجزاء الشمالية الغربية؛ فينتشر فها تكوين الموقر (B3) Muwaqqer).

ويتواجد خزان المياه الجوفية الرئيسي لحوض الأرزق المتكون من البازلت ضمن الطبقات الجوفية الضحلة. (Shallow Aquifer)، حيث أنّ معظم آبار المياه الجوفية في نطاق الطبقات الجوفية المتوسطة (Intermediate Aquifer)، والمياه الجوفية في نطاق الطبقات الجوفية المتوسطة (Deep والتي تتكون من تكوينات وادي السير (مجموعة عجلون)، وتكوينات عمان (مجموعة البلقاء). وأما بالنسبة لنطاق الطبقات الجوفية العميقة (Aquifer)، والمتمثلة في حقل حمزة (Ibrahim, et al 2018).

منهجية الدراسة وأساليب المعالجة.

استخدمت هذه الدراسة المنهج الوصفي والتحليلي الكمي لتقييم ومحاكاة الوضع الهيدرولوجي الحالي والمستقبلي، في ضوء سيناربوهات التغير المناخي التراكمية، بعد معالجة البيانات المكانية والزمانية حاسوبياً باستخدام نظم المعلومات الجغرافية، بالاعتماد على بيانات مناخية يومية، متمثلة بدرجات الحرارة الصغرى والعظمى، وكميات الهطول المطري، والإشعاع الشمسي للفترة منذ عام 1985 وحتى 2019م. بالإضافة إلى استخدام الأساليب الكمية والكارتوغرافية لحساب المتغيرات الهيدرولوجية المتعلقة بالموزانة المائية الحالية والمستقبلية، من حيث الاستعانة بتقنيات الاستشعار عن بعد، وبرمجيات نظم المعلومات الجغرافية، ونموذج واداة تقييم التربة والمياه من خلال ملحق ArcSwat ضمن بيئة ArcGis 10.6، وسيناربوهات التغير المناخى التراكمية (Incremental Scenarios)، وبرمجياة المناخى التراكمية (Microsoft Excel 2016).

أولا: مصادر البيانات.

اعتمدت الدراسة في تناولها وتحليلها موضوع التغير في الظروف الهيدرولوجية في حوض الأزرق باستخدام السيناربوهات التراكمية، ونموذج تقييم التربة والماء على عدة مصادر من المعلومات والبيانات، وهي:

- الخرائط بكافة أنواعها وأشكالها، وفق مقاييس مختلفة باختلاف نوعها، ومنها:
- الخرائط الطبوغرافية (1997) وهي: لوحات أم القطين، ودير الكهف وجبل أم دهام والسبيكة والصفاوي وراجل والأزرق ووادي الغدف وقصير عمرة، ضمن مقياس رسم (50000:1). (المركز الجغرافي الملكي، 1997).
- خريطة التربة (1993) وهي: لوحات أم القطين، ودير الكهف وجبل أم دهام والسبيكة والصفاوي وراجل والأزرق، ووادي الغدف وقصير عمرة، ضمن مقياس رسم (50000). (المشروع الوطني لخارطة التربة واستعمالات الأراضي، 1993).
- خرائط جيولوجية (1997) وهي: لوحات أم القطين ودير الكهف وجبل أم دهام والسبيكة والصفاوي وراجل والأزرق ووادي الغدف وقصير عمرة، ضمن مقياس رسم (50000). (سلطة المصادر الطبيعية، 1997).
- 2. نموذج الارتفاع الرقمي (DEM) بقدرة تميزية 30م، والذي توفره وكالة المساحة الجيولوجية الأمريكية؛ بهدف اشتقاق الأحواض المائية المختارة في هذه الدراسة، واجراء تحليلات مورفومترية وهيدرولوجية. (https://earthexplorer.usgs.gov).

3. المرئيات الفضائية.

اعتمدت الدراسة على المرئيات الفضائية التي يوفرها القمر الصناعي Sentinel 2 بقدرة تميزية 10م؛ بهدف إجراء تصنيف أو التعرف على المنطة الغطاء الأرضي، وأنماط استعمالاته وفق المعطيات والمحددات الموضحة في الجدول (1). وبعد الحصول على المرئيات الفضائية الممثلة لمنطقة الدراسة، تم تجميعها في مرئية واحدة فيما يعرف بعملية (Mosaicking). وبعد إجراء دمج للمرئيات تم القيام بعملية تحسين المرئيات الفضائية وتصنيفها (Erdas imagine 2016 بالاعتماد على أسلوب التصنيف المؤجه وتصنيفها (Maximum Likelihood Classification) باستخدام برمجية 1066 (1) وفق طريقة تصنيف احتمالية غاوس العظمى (Maximum Likelihood Classification)، والتي تمتاز بدقة تصنيف أعلى للخلايا من غيرها من طرق التصنيف المؤجه، بحث توزع كل فئة من الفئات إلى التوزع النظامي لها، بحيث يتم وضع كل خليه في الصنف الأكثر احتمالية له، بالاستناد على قيم انعكاس هذه الخلايا (غيث، 2010). وقد تم تصنيف أراضي حوض الأزرق وفق نظام تصنيف أراضي الحوض، وفقها المتعمالات الأراضي (Training Area) والتي تمثل أصناف الأغطية الأرضية واستعمالاتها في حوض الأزرق؛ وذلك ليتم تصنيف أراضي الحوض، وفقها من خلال القيم الانعكاسية لها. وتم استخلاص الغطاء الأرضي، واستعمالاته لحوض الأزرق وفق الجدول (2)

(https://sentinel.esa.int/web/sentinel/home).

الجدول (1) محددات المرئيات الفضائية لحوض الأزرق.

. ,,	محددات المرئية
الحوض	Tile Number
الأزرق	T37SBR, T37SCR,T37SCS, T37SBS,T37RCQ,T37RBQ,

المصدر: من عمل الباحث

الجدول (2) تصنيف الغطاء الأرضى واستعمالاته في حوض الأزرق

	J ,	
الرقم	التصنيف	الوصف
1	المناطق العمرانية	تشمل المناطق السكنية، والمنشأة التجارية، والصناعية، والتجارية.
2	الغطاء النباتي	تشمل جميع الأراضي الزراعية سواء البعلية أو المروية، بالإضافة إلى الغطاء النباتي الطبيعي
3	المراعي	تضم الأراضي التي تحتوي على النباتات الرعوبة، والمخصصة لرعي الحيوانات.
4	الأراضي الجرداء	هي الأراضي التي تفتقر لوجود أي مظهر من مظاهر الحياة النباتية.
5	الأراضي البازلتية	وتشمل المناطق البركانية، والأراضي ذات الصخور العاربة
6	السدود المائية	وتمثل الخزانات ومشاريع الحصاد المائي.

المصدر: من عمل الباحث بالاعتماد على نظام تصنيف أندرسون

4. البيانات المناخية تتضمن كميات الأمطار اليومية، ودرجات الحرارة العظمى والصغرى اليومية، والإشعاع الشمسي للمحطات المتواجدة في حوض الأزرق، للفترة الممتدة من 1985 وحتى 2019م. وتقسم هذه المحطات المناخية والمبينة في الجدول (3) مع خصائصها العامة إلى قسمين رئيسين، وهما: المحطات التابعة لدائرة الأرصاد الجوية والمحطات التابعة لوزارة المياه والري. (دائرة الأرصاد الجوية، 2019)، (وزارة المياه والري، 2019).

الجدول (3) المحطات المناخية في حوض الأزرق وخصائصها العامة.

		 	* , ,	-, .		
الجهة التي تتبع لها	() 1()	الإحداثيات الفلكية			5 . (.)(() ()	- 11
	منسوب الارتفاع	دائر العرض	خط الطول	المحطات المناخية	الرقم	
دائرة الأرصاد	715	31.83	36.82	الصفاوي	1	
الجوية العامة	533	32.2	37.13	الأزرق الجنوبي	2	
	900	32.31	37.53	تلال الأشقف	3	
	700	32.01	37.45	وادي سلحوب	4	
	1025	32.25	36.85	دير الكهف	5	
وزارة المياه والري	800	32.1	36.9	اريتين	6	
	580	31.8	36.6	البطم	7	
	650	31.73	36.46	قصر الخرانة	8	
	525	31.73	37.02	العمري	9	

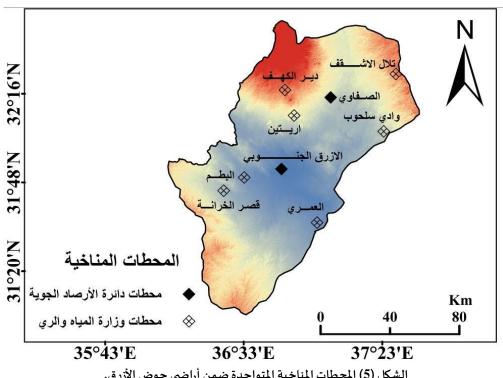
المصدر: من عمل الباحث

ثانياً: البرمجيات المستخدمة.

استعانت الدراسة في معالجتها لموضوعها بمجموعة من البرمجيات، وهي:

- 1. بتقنيات نظم المعلومات الجغرافية، وخاصة برنامج ArcGIS10.6 في إجراء عمليات التصحيح الجغرافي للخرائط الورقية وتحويلها إلى رقمية، وتحديد الأحواض المائية المختارة، ودورها في عملية الإخراج الكارتوغرافي.
- 2. ملحق ArcSwat 2012 والمختص بإجراء المحاكاة والنمذجة للحوض. حيث يُعدُّ نموذج تقييم التربة والمياه من النماذج المناخية والهيدرولوجية في آن واحد؛ من حيث اعتماده على بيانات مناخية يومية لعدة عناصر وهي درجة الحرارة والأمطار والرطوبة النسبية والإشعاع الشمسي وسرعة الرياح واتجاها في تقييم الوضع الهيدرولوجي الحالي للحوض المائي. كما يُمّكن هذا النموذج المستخدمين والمهتمين من إمكانية إجراء تنبؤات مستقبلية للعناصر المناخية وتوظيفها في عملية نمذجة الأحواض المائية؛ بهدف إجراء مشاريع وتنفيذ خطط واستراتيجيات مائية مستقبلية في ضوء تلك التنبؤات.

وقد تم تطوير نموذج أداة تقييم التربة والمياه من قبل دائرة البحوث الزراعية ومركز الأبحاث التابع لجامعة تكساس في الولايات المتحدة الأمريكية، وذلك في أوائل التسعينات من القرن الماضي (Bell, 2015). وكانا يهدفان إلى تطوير نموذج قادر على تقييم التأثير طويل المدى لإدارة الأراضي واستخدامها على كمية المياه المتواجدة في الأحواض المائية الكبيرة والصغيرة على حدٍ سواء.


- 3. برمجية Erdas Imagine 2016 لتصنيف الغطاءات الأرضية واستعمالاتها.
- 4. برمجية Microsoft Excel 2016لعمل الأشكال البيانية للمتغيرات الهيدرولوجية والمناخية.

ثالثاً: إجراءات الدراسة.

يتضمن إجراء هذه الدراسة للنمذجة الحالية للواقع الهيدرولوجي الحالي والمستقبلي في ضوء سيناربوهات التغير المناخي التراكمية على مجموعة من المراحل، وهي: الاطلاع على الدراسات السابقة، ومن ثم إعداد بيانات الدراسة وتجهيزها، قبل التعامل معها في نموذج وأداة تقييم التربة والمياه من مصادرها المختلفة، من خلال التصحيح الهندمي والإشعاعي للمرئيات الفضائية، وتحويل البيانات والخرائط الورقية إلى رقمية وتبويها، حتى يسهل التعامل معها حاسوبيًا كالخرائط الجيولوجية وبعض العناصر المناخية. كما قامت الدراسة أيضًا بمعالجة البيانات المفقودة، سواء البيانات المناخية أو الجربان السطحي، من خلال تعبئتها برقم 99- لكي يتعرف النموذج على أن هذه البيانات مفقودة.

بعد مرحلة جمع وتجهيز البيانات، تأتي مرحلة تحديد الحوض بالطريقتين التقليدية أولا، باستخدام الخرائط الطبوغرافية، ومن ثم تحديده باستخدام برمجيات نظم المعلومات الجغرافية (GIS)، أو باستخدام نموذج الارتفاعات الرقمي (DEM) مباشرة بواسطة الأداة (Sub Basin) باستخدام برمجيات نظم المعلومات الجدود الخارجية للحوض يتم استخلاص الروافد المائية والمصب (Outlet) والأحواض الفرعية (Sub Basin) وحساب المتغيرات المساحية والتضاريسية له، وتمت هذه المرحلة والتي تتبعها باستخدام ملحق 2012 ArcSwat

ثم تأتي مرحلة تحديد وحدات الاستجابة المائية (HRU)، والتي تشير إلى الأراضي المجمعة داخل الحوض، والمتكونة من غطاء نباتي وأراضي وتربة ومجموعة إدارة متجانسة (الغنميين، 2018م). ويتم تحديد هذه الوحدات من خلال التعامل مع ثلاث متغيرات رئيسة، وهي: تصنيف الغطاء الأرضي واستعمالاته باستخدام برمجية 2016 Erdas Imagine 2016، وفق تصنيف مخصص يستخدمه نموذج تقييم التربة والمياه SWAT Landuse) واستعمالاته باستخدام مرمجية 2016 Erdas Imagine 2016، فوقق النسيج، باستخدام عدة تصنيفات مثل FAO وهو المعتمد بالدراسة؛ وذلك بسبب اعتماد خرائط التربة في الأردن على هذا النوع من التصنيف، أو التصنيف الأمريكي والمبني عليه النموذج، ويتم إضافة تصنيف منظمة الأغذية والزراعة الدولية FAO إلى قاعدة بيانات نموذج SWAT؛ لكي يتعرف عليها ويسهل التعامل معها، من حيث الخصائص الفيزيائية لأنواع التربة المنتشرة في حوض الأزرق. ثم يأتي المتغير الثالث والمتعلق بالانحدار وإجراء تصنيف له. بعد تحديد وتعريف نموذج SWAT على متطلبات ومتغيرات تحديد وحدات الاستجابة المائية. المستجابة المائية يتم إجراء تطابق (Overlay) بين الخرائط الثلاثة الناتجة عن تحديد تلك المتغيرات، والخروج بخريطة تبين وحدات الاستجابة المائية. بعد المراحل السابقة تأتي المرحلة المهمة وهي عمل المحطات المناخية للحوض المائي، وتعريف ملحق نموذج SWAT عليها من خلال برنامج SWAT وقد بُنيَ نموذج SWAT على أن يتضمن الحوض المائي على الأقل محطتين مناخيتين، لذا تم الاعتماد على قراءات محطات تابعة لوزارة المياه والري وودائرة الأرصاد الجوية، وببين الشكل (5) المحطات المناخية المتواجدة ضمن أراضي حوض الأزرق.

الشكل (5) المحطات المناخية المتواجدة ضمن أراضي حوض الأزرق. المصدر: من عمل الباحث بالاعتماد على بيانات وزارة المياه والري ودائرة الأرصاد الجوبة، 2019م

بعد إجراء هذه الخطوة، يتم إنشاء قاعدة بيانات SWAT وفق المتغيرات السابقة، ومن ثم تحديد طريقة حساب التبخر المحتمل (PET) وفق طريقة هارقيز (Hargraves)، ونظرًا لأهمية هذا العنصر؛ فقد احتوى نموذج SWAT على ثلاث طرق حسابية لحساب التبخر المحتمل (PET)، والتي تتيح للمستخدم إمكانية اختيار الطريقة المناسبة في ضوء ما يتوفر من عناصر مناخية لديه، بالإضافة إلى إمكانية إضافة ملف يحتوي على قيم محسوبة للتبخر. وهذه المعادلات هي: بنمان (Penman-Monteith)، ومعادلة بريسلي تايلور (Priestly-Taylor)، والمعادلة التي تستند بشكل أساسي على درجة حرارة الهواء وهي هارقيز (Hargraves) وهي التي سوف يتم الاعتماد عليها في هذه الدراسة؛ نظرًا لتوفر جميع مدخلاتها المناخية، التي يمكن تمثيلها في المعادلة التالية (Weib and Menzel,2008):

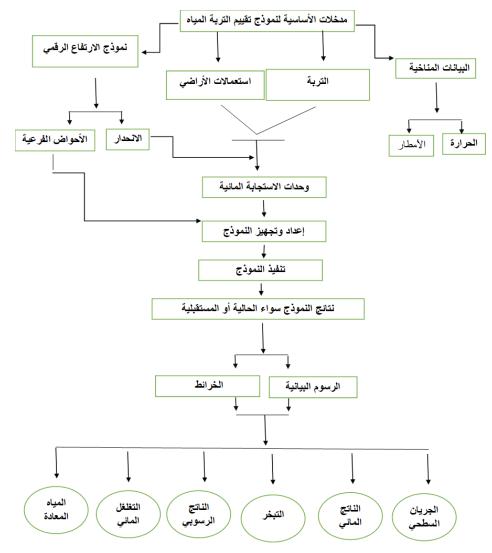
$$Erc = 0.002 * Ra * \delta T^{0.5} * (T + 17.8)$$

حيث يمثل Erc التبخر المحتمل بناءً على معادلة هارفيز ملم/ يوميًا، وRa متوسط الإشعاع اليومي (ميجا جول/ يوم)، ويشير 6إلى الفرق في درجة الحرارة المئوية (متوسط درجة الحرارة العظمي الشهرية - متوسط درجة الحرارة الدنيا)، وT إلى متوسط درجة حرارة الهواء.

ويحاكي نموذج تقييم التربة والمياه حجم الجربان السطحي ومعدلات الجربان القصوى لكل وحدة الاستجابة الهيدرولوجية باستخدام كميات الأمطار اليومية، وفق طريقة رقم منحنى الحفاظ على التربة (The Soil Conservation Service Curve Number (SCS-CN) والتي يمكن تمثيلها رباضيًا كما يلى (Mosbahi et al. 2013):

$$Q = \frac{(R - 0.2 \, s)^2}{(R + 0.8 \, s)} \qquad R > 0.2 \, s$$

$$Q = 0.0 R \le 0.2 s$$


حيث يمثل Q الجربان السطعي اليومي (ملم)، R هو هطول الأمطار اليومي (ملم)، وS هي مخزون الحوض المائي. ويختلف مخزون المائي بين الأحواض المائية، وذلك بسبب تضافر عدة عوامل، وهي: التربة، واستخدامات الأراضي وإدارتها، والمنحدرات تختلف جميعها، ومع مرور الوقت بسبب التغيرات في محتوى الماء في التربة. ويرتبط المحتوى المائي للحوض برقم المنحى (CN) بواسطة معادلة SCS والتي يمكن تمثيلها رباضيًا كما يلي (Mosbahi et al. 2013):

$$s = 254 \left(\frac{100}{\text{CN}} - 1 \right)$$

بعد كل المراحل السابقة يتم عمل تنفيذ للنموذج (Run)، وعمل خرائط توضح كل عنصر من عناصر الموازنة المائية السطحية Water Surface)، وإعداد الجداول والأشكال البيانية التي تمثل الخصائص الإحصائية لتلك المتغيرات. (Water Ground Budget)، وإعداد الجداول والأشكال البيانية التي تمثل الخصائص الإحصائية لتلك المتغيرات. ويمكن تمثيل الدورة المائية باستخدام نموذج أداة تقييم التربة والمياه بالاعتماد على معادلة الموازنة المائية من خلال المعادلة المبينة أدناه al. 2017)

$$SWt = SW0 + \sum_{i=1}^{i=t} (Rday - Qsurf - Ea - Wperc - Qgw)$$

حيث يمثل SW_1 ومهدر رطوبة التربة الأولى من خلال الخرائط الرقمية للتربة، حيث تم الحصول على مصدر رطوبة التربة الأولى من خلال الخرائط الرقمية للتربة المعدة من قبل وزارة الزراعة، على شكل ملفات رقمية (Shapefile)، تتضمن الخصائص الفيزيائية لكل صنف من أصناف التربة المنتشرة في حوض الأزرق كالسعة الحقلية ونقطة الذبول. كما يشير رمز R_{day} إلى كميات الهطول اليومية، ويتمثل الجريان السطعي في المعادلة بالرمز R_{day} ، كما تضمنت المعادلة عنصر التبخر، وهو العنصر الأساسي في الموازنة المائية والمتمثل بالرمز E_a ، كما اشتملت المعادلة على عنصر التغلغل كما تضمنت المعادلة على عنصر التغلغل (Percolation) المشار له بالرمز W_{perc} ، وكما يشير رمز W_{gw} إلى عودة التدفق (الجريان) وجميع العناصر يتم قياسها أو تسجيلها بملم/ يوميًا، أما رمز b فأنه يمثل الفترة الزمنية بالأيام. ومكن تمثيل خطوات نموذج تقييم التربة والمياه كما في الشكل (6).

الشكل (6) تمثيل خطوات نموذج تقييم التربة والمياه.

المصدر: من عمل الباحث

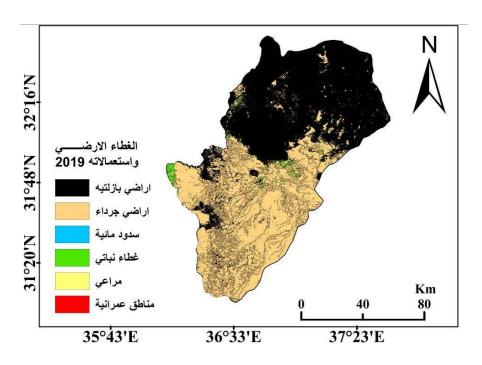
وبعد إجراء النمذجة الحالية للظروف الهيدرولوجية، وفق المعطيات الحالية، تبدأ مرحلة إجراء النمذجة المستقبلية للفترة منذ 2020م وحتى 2030 م وفق السيناريوهات التراكمية (Incremental Scenarios)، التي تفترض ازديادا تدريجيًا في درجات الحرارة مثل +1 و+2 و+8, ويرافق (Abdulla et al., 2008 & 20 % أو تناقصها 20 % أو تناقصها 20 % و20 % 20 % 20 % 20 % أو تناقصها 20 % وحرات الحرارة بمقدار (حصيتم في هذه الدراسة بناء ثلاثة سيناريوهات مناخية بناءً على السيناريوهات التراكمية بالاعتماد على الزيادة في درجات الحرارة بمقدار 20 ويرافقه الحالات المتوقعة للأمطار، وتطبيقها على حوض الأزرق، ومن ثم إجراء مقارنات بين الظروف الهيدرولوجية الحالية والمستقبلية ووضح الجدول (4) السيناريوهات المستقبلية التي تم اختيارها.

الجدول (4) السيناربوهات المستقبلية للتغير المناخي باستخدام السيناربوهات التراكمية.

التغير في كميات الأمطار	التغير في درجات الحرارة	رقم السيناربو
%10-	1+	1
%10+	1+	2
%10-	2+	3
%10+	2+	4

المصدر: من عمل الباحث

نتائج الدراسة ومناقشتها


أولاً: أنماط الغطاء الأرضى واستعمالاته في حوض الأزرق.

يشهدُّ حوض الأزرق تنوعًا في الغطاء الأرضي واستعمالاته، وذلك بحكم كبر مساحته، بالإضافة إلى الزيادة السكانية التي تؤدي إلى زيادة في الاستعمالات الحضرية المختلفة، بالإضافة إلى التوسع في القطاءات الأرضية واستعمالاتها في حوض الأزرق على الأصناف التالية الموضحة في الشكل (7)، والجدول (5):

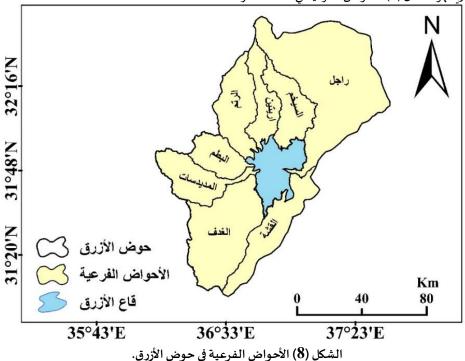
الجدول (5) أصناف الغطاء الأرضى واستعمالاته في حوض الأزرق.

	,, , , , , , , , , , , , , , , , , , ,	<i>y</i>	
	المساحة	أصناف الغطاء الأرضي واستعمالاته	الرقم
%	کم ²	3	1 3
47.5	5956.3	الأراضي البازلتية	1
50.8	6359.5	الأراضي الجرداء	2
0.003	0.4	السدود المائية	3
1.1	138.7	الغطاء النباتي	4
0.5	68.9	المراعي	5
0.04	4.9	المناطق العمرانية	6
100	12528.7		المجموع

المصدر: من عمل الباحث

الشكل (7) الغطاء الأرضي واستعمالاته في حوض الأزرق. المصدر: من عمل الباحث بالاعتماد على مرئيات فضائية من القمر الصناعية Sentinel2، 2019م.

وقد تبيّن من الجدول (5) والشكل (7) أن أغلبية مساحة الحوض تنصف ضمن فئتين رئيسيتين وهما: الأراضي البازلتية والجرداء، حيث بلغت مساحتهما 8.38% من جلّ مساحة الحوض، وهي موزعة على 47.5% والتي صنفت على أنها أراضي بازلتية، والمتواجدة في القسم الشمالي من الحوض، مع تواجد لبعض المساحات في الأطراف الغربية والشرقية منه، في حين كانت نسبة الأراضي الجرداء 50.8% من مساحة الحوض، والتي توزعت في الجزء الأوسط والجنوبي منه. وبالنسبة للسدود المائية والمناطق العمرانية؛ فقد كانت أقل أصناف الأغطية الأرضية المتواجدة ضمن أراضي حوض الأزرق، حيث بلغت المساحة الممثلة لهما أقل من 5.5% من مساحة الكلية للحوض.


وأما فيما يتعلق بالغطاء النباتي سواء كان طبيعيًا أو مناطق الزراعية فيتواجد في منطقتين رئيستين، وهما: منطقة الوسطى من الحوض، والتي تمثل منطقة القاع، وفي أقصى الطرف الغربي من الحوض. إلا أن هذا التركز لا ينفي وجود بعض البقع المساحية المتناثرة ضمن إرجاء الحوض، خاصة في القسم الشمالي منه. وقد بلغت المساحة التي شغلها الغطاء النباتي 1.1% من المساحة الممثلة للحوض. وبالنسبة للمناطق التي صنفت على أنها مناطق رعوبة؛ فقد بلغت مساحة الإجمالية للحوض.

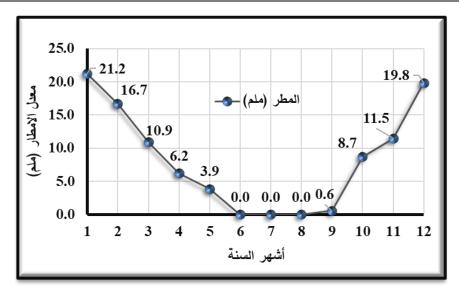
ثانيًا: محاكاة الظروف الهيدرولوجية الحالية لحوض الأزرق.

تتضمن المحاكاة الحالية لحوض الأزرق محاكاة الواقع المائي فيه، والمتمثلة بعناصر الموازنة المائية السطحية، مثل كميات الهطول والتبخر الفعلي والكامن والجربان السطحي، وهي:

1. الأحواض الفرعية ووحدات الاستجابة المائية.

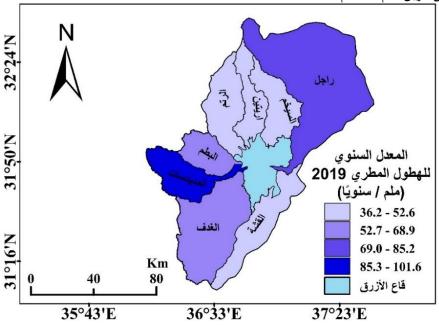
تم إجراء تقسيم للحوض المائي إلى أحواضٍ فرعية (Sub Basin)، ووحدات الاستجابة المائية (HRU)، وقد تبين من خلال تطبيق نموذج تقييم التربة والمياه على حوض الأزرق أنّه احتوى على ثمان أحواض فرعيةٍ، و111 وحدة استجابة مائية عند مستوى عتبة 5% لكل من التربة والانحدار واستعمالات الأراضي. ويظهر الشكل (8) الأحواض الفرعية في منطقة الدراسة.

المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام 10.6 ArcGis المصدر:


محاكاة الموازنة المائية السطحية.

وتضم الموازنة المائية السطحية عدة متغيرات تتحكم في كمية العجز أو الفائض المائي، حيث إنها تعد بمثابة عملية توزان ديناميكي بين ما يتم اكتسابه عن طريق المطول المطري، وما يتم فقده عن طريق التبخر والنتح (الزغول، 2016). وتضم هذه المحاكاة العناصر الأتية:

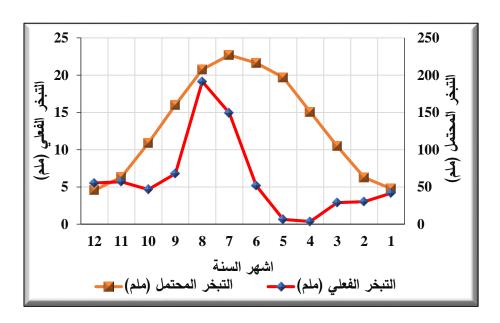
الهطول المطري


يمثل الهطول بكافة أشكاله وأنواعه المحرك الأساسي للموازنة المائية في أي حوض مائي، حيثُ تعتمد بقية عناصر الموازنة عليه، خاصة التبخر الفعلي والجريان السطعي. كما أنّ بعض العمليات النهرية تعتمد بشكل رئيسي على كميات الهطول وشدتها مثل الحت النهري بكافة أنواعه، وانجراف التربة وانزلاقاتها.

وقد أظهر نموذج SWAT أن معدل كميات الهطول المطري في حوض الأزرق خلال فترة الدراسة 99.8 ملم/سنويًا. وكما أوضح هذا النموذج تباينًا زمنيًا خلال أشهر السنة ضمن فترة الدراسة؛ حيث تلقى الحوض أكثر معدل أمطار خلال فترة الدراسة أثناء شهر كانون الثاني بقيمة بلغت 21.2 ملم، في حين تفتقر أشهر الصيف خلال فترة الدراسة لأي كميات أمطار تذكر. ويظهر الشكل (9) التباين الزماني لمعدل الأمطار في حوض الأزرق خلال فترة الدراسة.

الشكل (9) التباين الزماني لمعدل الأمطار في حوض الأزرق خلال فترة الدراسة. المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام

كما أظهرت نتائج SWAT أنّ أغلب الأحواض الفرعية لحوض الأزرق يبلغ فها معدل الهطول السنوي لعام 2019م ما بين 36.2 ملم سنويًا ووقع أخلب الأحواض فرعية؛ وهي أحواض أودية السخيم وأربتين والرتم والقشة، وتواجد اغلب تلك الأحواض في القسم الشمالي الغربي من حوض الأزرق ما عدا حوض وادي القشة. وقد كان حوض وادي المديدسسات والواقع في الجهة الغربية من حوض الأزرق هو الأكثر هطولاً، حيث تراوح الهطول المطري فيه ما بين 85.5 ملم سنويًا و101.6 ملم سنويًا. وببين الشكل (10) التباين المكاني لمعدل الهطول المطري بين الأحواض الفرعية لحوض الأزرق لعام 2019م

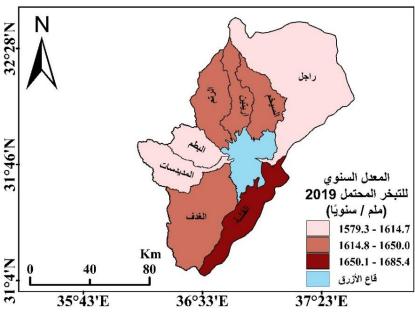


الشكل (10) التباين المكاني لمعدل الهطول المطري بين الأحواض الفرعية لحوض الأزرق ArcGIS 10.6 وباستخدام SWAT

ب- التبخر.


يُعرف تحول الماء من الحالة السائلة إلى الحالة الغازية بعملية التبخر. ويُعدُّ التبخر من العمليات المهمة والأساسية التي توضح سلوك نظام الاتزان الحراري لسطح الأرض والغلاف الجوي (العرود، 2002). ويقسم التبخر إلى نوعين أساسين هما: التبخر الفعلي (Actual Evaporation) والتبخر المحتمل (Potential Evaporation).

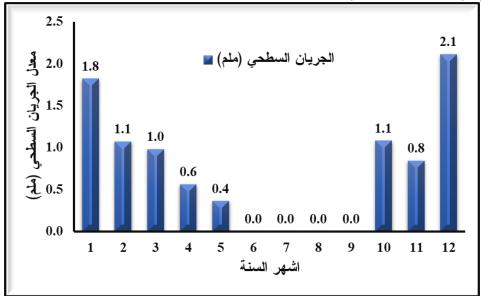
وقد أظهر نموذج SWAT أن معدل التبخر الفعلي والمحتمل في حوض الأزرق بلغ على التوالي 73.6 ملم سنويًا و1592.5 ملم سنويًا و185 ملم سنويًا خلال الفترة الممتدة ما بين 1985 و2019م. إلا أنّ هذه القيم تتابين زمنيًا (خلال أشهر السنة) ومكانيًا (ضمن الأحواض الفرعية). كما أنّ قيم التوزيع الزمني والمكاني للتبخر الفعلي والمحتمل يوصف بأنّه متغاير؛ فقد كانت أعلى قيمة لمعدل التبخر الفعلي خلال شهر أيار بقيمة بلغت 19.1 ملم، بينما بلغت أعلى قيمة لمعدل التبخر الفعلي 4.0 ملم وذلك خلال شهر أيلول، في حين بلغت أدنى قيمة لمعدل التبخر الفعلي والمحتمل في حوض الأزرق خلال بلغت أدنى قيمة لمعدل التبخر الفعلي والمحتمل في حوض الأزرق خلال فترة الدراسة.



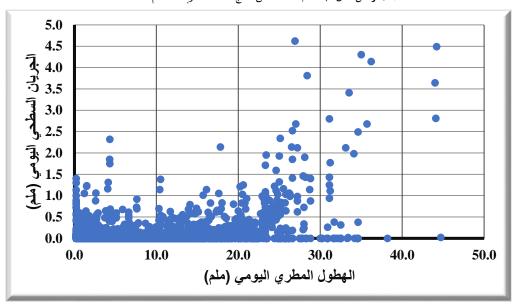
الشكل (11) قيم معدل التبخر الفعلي والمحتمل في حوض الأزرق خلال فترة الدراسة. Excel بالمصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام

أما بالنسبة للتباين المكاني بين الأحواض الفرعية لحوض الأزرق في قيم التبخر الفعلي والمحتمل لعام 2019م، فقد اتضح أن حوض وادي راجل ذو المعدل التبخر الفعلي الأكبر والذي يتراوح ما بين 49.7 ملم سنويًا و59.7 ملم سنويًا، ويُعزى ارتفاع معدل التبخر الفعلي فيه إلى طبيعة سطحه؛ حيث إنّ أغلب أراضيه تغطها صخور الحرة السوداء، التي تعمل على زيادة الفاقد المائي بواسطة عملية التبخر الفعلي. في حين كان أقل معدل للتبخر الفعلي في حوضي وادبي الرتم والقشة والبالغ فهما ما بين 19.4 ملم سنويًا و29.5 ملم سنويًا. أما بالنسبة لمعدل التبخر المعتمل فقد كانت النتائج مغدل التبخر الفعلي، حيث كان حوض وادي راجل هو الأقل، بالإضافة إلى حوضي وادبي البطم المديدسسات، ويردُّ هذا الانخفاض إلى أنّ هذه الأحواض الثلاث تشهد هطولا مطريًا أكثر من بقية الأحواض، مما يسبب انخفاضاً في معدل التبخر المعتمل فها، كما أظهرت النتائج أنّ حوض وادي القشة الواقع في أقصى الجنوب الشرقي لحوض الأزرق على شكل امتداد شريطي من الجنوب الغربي إلى الشمال الشرقي ذو القيمة الأكثر في معدل التبخر المحتمل، والتي بلغت ما بين 1650.1 ملم سنويًا 1685.4 ملم سنويًا. ويوضح الشكلين (12) و(13) التباين المكاني للتبخر الفعلي والمحتمل لعام 2019 في حوض الأزرق.

الشكل (12) التباين المكاني لمعدل التبخر الفعلي بين الأحواض الفرعية لحوض الأزرق المشكل (12) ArcGIS المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام 6.01

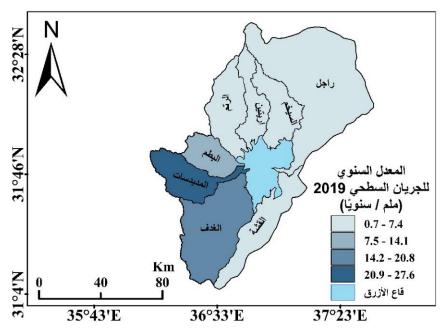

الشكل (13) التباين المكاني لمعدل التبخر المحتمل بين الأحواض الفرعية لحوض الأزرق الشكل (13) ArcGIS المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام 6.01

ج- الجربان السطحي.


يعدُّ الجريان المحصلة النهائية بعد وصول الأمطار لسطح الأرض وفقدانها بواسطة العمليات المختلفة، ومنها التبخر والتسرب وامتصاصه من قبل الغطاء النباتي. وقد بلغت قيمة معدل الجريان السطحي بالاعتماد على معادلة رقم المنحنى (CN) 8.83 ملم سنويًا على مدى فترة الدراسة الممتدة من عام 2015م وحتى 2019م. إلا أنّ قيمة الجريان السطحي تتباين بين أشهر السنة، حيث بلغت أعلى قيمة له في شهر كانون الثاني والبالغة 1.1 ملم، في حين كانت أدنى قيمة له خلال أشهر الصيف.

وأما بالنسبة للتباين اليومي للجربان السطحي والذي يمثل العواصف المطربة التي شهدها حوض الأزرق طيلة فترة الدراسة، فقد أوضحت الدراسة أن 99% من الجربان السطحي اليومي لحوض الأزرق طيلة فترة الدراسة كان أقل من 2 ملم، في حين كان عدد الأيام التي تجاوز فيها الجربان السطحي أن 99% من الجربان السطحي أكثر من 2 ملم، و12 يوم كان الجربان السطحي أكثر من 2 ملم، و12 يوم كان الجربان السطحي أكثر من 2 ملم، و12 يوم كان الجربان السطحي أكثر من 4 ملم، و10 أيام كان الجربان السطحي أكثر من 2 ملم، و12 يوم كان الجربان السطحي أكثر عن 4 ملم، و10 أيام كان الجربان السطحي أكثر من 2 ملم، و10 يوم كان الجربان السطحي أكثر من 2 ملم ورغة على أربع أيام كان الجربان السطحي أكثر من 2 ملم، و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم و10 يوم كان الجربان السطحي أكثر من 2 ملم كان الحربان السطحي أكثر من 4 ملم كان الجربان السطحي أكثر من 4 ملم كان الحربان السطحي أكثر من 4 ملم كان الحربان السطحي أكثر من 4 ملم كان الحربان المربان المر

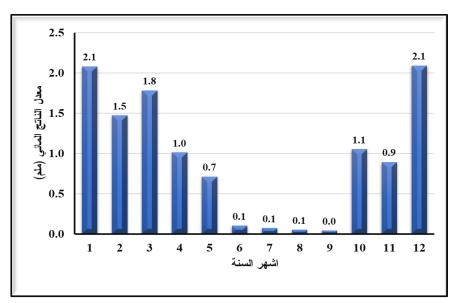
وقد كانت أعلى قيمة للجربان السطحي في عام 1992م بقيمة بلغت 4.62 ملم. ويظهر الشكل (14) و(15) التباين الزماني الشهري واليومي لمعدل الجربان السطحي في حوض الأزرق خلال فترة الدراسة.



الشكل (14) التباين الزماني الشهري لمعدل الجربان السطحي في حوض الأزرق خلال فترة الدراسة. المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام المصدر:

الشكل (15) التباين الزماني اليومي لمعدل الجربان السطحي في حوض الأزرق خلال فترة الدراسة. المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام Excel

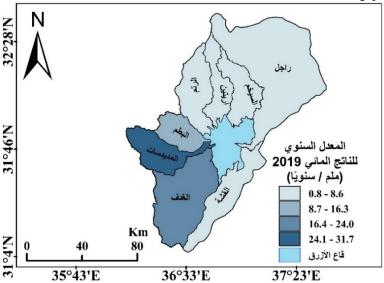
وفيما يتعلق بالتباين المكاني بين الأحواض الفرعية لحوض الأزرق في قيم معدل الجربان السطعي لعام 2019م، فقد اتضح أن الأحواض الجنوبية والجنوبية الغربية وهي: المديدسسات والبطم والغدف، ذات قيم جريان سطعي أعلى من الأحواض الشمالية والشرقية منها؛ ويرد ذلك إلى أنّ الأحواض الثلاث ذات معدل مطري أعلى من الأحواض الفرعية لحوض الأزرق.



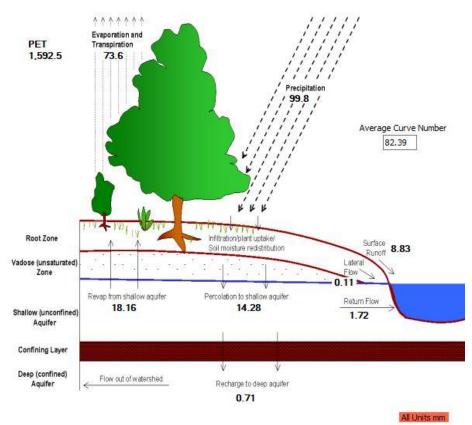
الشكل (16) التباين المكاني لمعدل الجربان السطحي بين الأحواض الفرعية لحوض الأزرق. المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام ArcGIS 10.6

- الناتج المائي.

ويعرف بالغلّة المانية أو الحصيلة المائية أو العائد المائي (Water Yield)، والتي تعد بمثابة المحصلة النهائية والمستفادة من المياه الهاطلة على الحوض في استخداماتها المختلفة (الغميض، 2019). ويتأثر الناتج المائي بعدة ظروف؛ كالظروف المناخية بما فيها درجات الحرارة وكميات الهطول السنوي، بالإضافة إلى طبيعة الغطاء الأرضي واستعمالاته ونوعية التربة والصخور.


وقد أظهر تطبيق نموذج SWAT أن معدل الناتج المائي في حوض الأزرق خلال فترة الدراسة 11.37 ملم/ سنويًا، إلا أنّ هذه القيمة تتباين على مدار شهور السنة خلال فترة الدراسة، حيث بلغت أعلى قيمة له في شهري كانون الأول والثاني 2.1 ملم، في حين تنعدم خلال شهر أيلول. ويبيّن الشكل (17) التباين الزماني لمعدل الناتج المائي في حوض الأزرق خلال فترة الدراسة.

الشكل (17) التباين الزماني لمعدل الناتج المائي في حوض الأزرق خلال فترة الدراسة. المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام


وبالنسبة للتباين المكاني بين الأحواض الفرعية لحوض الأزرق في قيم الناتج المائي لعام 2019م، فقد تماثل مع التباين المكاني للجربان السطحي،

حيث كانت أحواض أودية المديدسسات والبطم والغدف هي الأكثر في معدل الناتج المائي خلال عام 2019م بقيمة تجاوزت 16.3 ملم سنويًا، في حين أنّ بقية الأحواض الفرعية لحوض الأزرق قل فيها معدل الناتج المائي عن 8.6 ملم سنويًا. ويظهر الشكل (18) التباين المكاني لمعدل الجريان السطعي بين الأحواض الفرعية لحوض الأزرق.

الشكل (18) التباين المكاني لمعدل للناتج المائي بين الأحواض الفرعية لحوض الأزرق. ArcGIS 10.6 وباستخدام SWAT وباستخدام 10.6

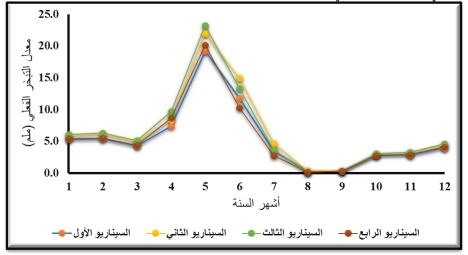
ويمكن تلخيص كافة النتائج السابقة في الشكل (19) التي ينتجه نموذج SWATعبر ملحقه ArcGwat ضمن بيئة ArcGIS، وهو بمثابة تمثيل واقعي لطبيعة الدورة المائية (الهيدرولوجية) في الأحواض المائية. وتبين الشكل (19) نمذجة الواقع الهيدرولوجي في حوض الأزرق خلال فترة الدراسة.

الشكل (19) نمذجة الو اقع الهيدرولوجي في حوض الأزرق خلال فترة الدراسة. المصدر: من عمل الباحث وهو أحد مخرجات نموذج SWAT

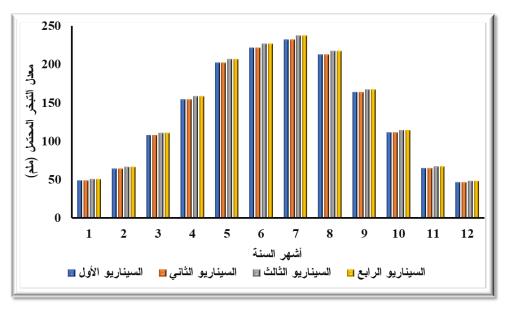
ثالثًا: محاكاة الظروف الهيدرولوجية السطحية المستقبلية لحوض الأزرق.

يعد المستقبل المجهول للظروف الهيدرولوجية في ضوء التغير المناخي المحتمل، سواء كان التغير إيجابي أو سلبي مهمًا جدًا للإنسان؛ وذلك لمحاولة فهم المستقبل، واتخاذ الاحتياطات اللازمة. وقد تم تطبيق عدة سيناربوهات للتغير المناخي المتوقع لتقييم التأثير المتوقع للتغير المناخي على الظروف الهيدرولوجية والموارد المائية في حوض الأزرق؛ إذ تمت تجربة أربع سيناربوهات للتغير المناخي التراكمية. وقد تم الاعتماد على هذه السيناربوهات والتي تعد مناسبة للظروف المناخية للأردن، والمتصف بالتغير المكاني والزمني الكبير في هطول الأمطار (وزارة البيئة، 2009) ليس اعتباطيًا، وإنما وفق قيم تغير درجات الحرارة وكميات الهطول والمحددة من قبل اللجنة الدولية للتغيرات المناخية (2015). وفيما يلي عرض نتائج تطبيق السيناربوهات التراكمية على حوض الأزرق، وذلك لبيان تأثير التغير المناخي على الظروف الهيدرولوجية والموارد المائية له. وفيما يلي عرض للنتائج:

1. التبخر.

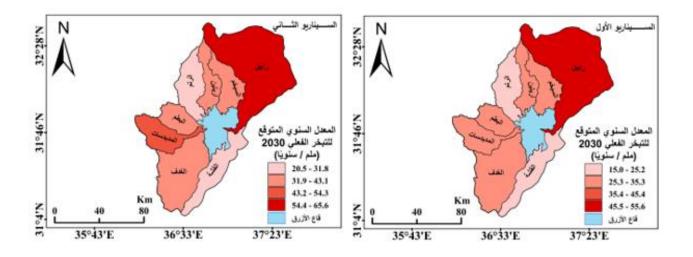

يعد معرفة السلوك المستقبلي للتبخر بشقيه: الفعلي والمحتمل أمر في غاية الأهمية؛ لارتباطه بالاتزان الحراري للأرض. وفي ضوء السيناربوهات التراكمية للتغير المناخي المطبقة في هذه الدراسة، نلحظ التباين بين القيم المستوفاة منها، فالنسبة للتبخر الفعلي فقد كان السيناربو الأول ذو القيمة الأقل من بين السيناربوهات الأخرى، فقد بلغت قيمته 67.9 ملم سنويًا، في حين كان السيناربو الرابع هو الأكثر قيمةً، فقد بلغت قيمة التبخر الفعلي فيه 79.6 ملم سنويًا، وأما بالنسبة للتبخر المحتمل؛ فقد كانت أقل قيمه في السيناربو الأول والثاني، التي بلغت 1634.4 ملم سنويًا، في حين بلغت قيمه في السيناربو الثالث والرابع وأما بالنسبة للتبخر المحدول (6) معدل التبخر الفعلي والمحتمل المتوقعان لحوض الأزرق بناء على السيناربوهات التراكمية للفترة بين 2020م و2030م. الجدول التبخر الفعلي والمحتمل المتوقعان لحوض الأزرق

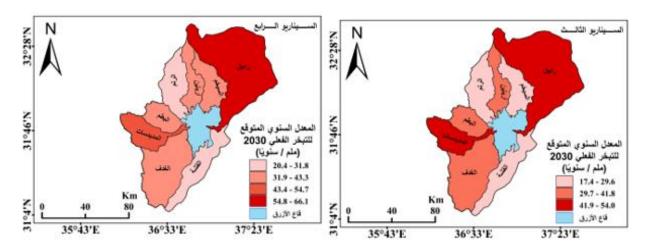
بناء على السيناربوهات التراكمية للفترة بين 2020م و2030م.

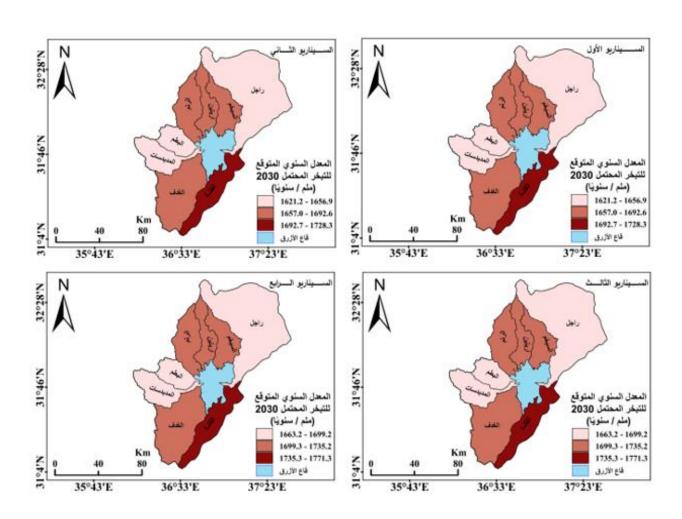

1,					
معدل التبخر المحتمل المتوقع (ملم سنويًا)	ملي المتوقع	معدل التبخر الف	(15. : ala) a ā . = tl	السيدادينا	ا ة -
معدل التبحر المعتمل المتوقع (ملم ستويا)	%	(ملم سنويًا)	المعدل المطري المتوقع (ملم سنويًا)	السيناريوهات	الرقم
1634.4	75.6	67.9	89.8	الأول	1
1634.4	72.3	79.4	109.8	الثاني	2
1676.4	75.8	68.2	89.9	الثالث	3
1676.4	72.5	79.6	109.8	الرابع	4

المصدر: من عمل الباحث بالاعتماد على نتائج ArcSwat 2012

وفيما يتعلق بالتباين الزمني الشهري للتبخر الفعلي، فقد أظهر تطبيق سيناربوهات التغير المناخي التدرجية أن شهر أيار كان أكثر شهور السنة في معدل التبخر الفعلي المتوقع في كافة السيناربوهات، في حين كان شهر آب الأقل في قيم معدل التبخر الفعلي المتوقع في كافة السيناربوهات، في حين كان شهر آب الأقل في ضوء تطبيق سيناربوهات التغير المناخي التراكمية، فقد تبين أن شهر 2030م. وأما بالنسبة للتباين الزمني الشهري لمعدل التبخر المحتمل المتوقع، في حين كان شهر كانون الأول هو الأقل. ويظهر الشكل (20) و(21) التباين الزماني الشهري لمعدل التبخر الفعلي والمحتمل المتوقعان في حوض الأزرق خلال فترة الدراسة.




الشكل (20) التباين الزماني الشهري لمعدل التبخر الفعلي المتوقع في حوض الأزرق خلال فترة الدراسة. المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام

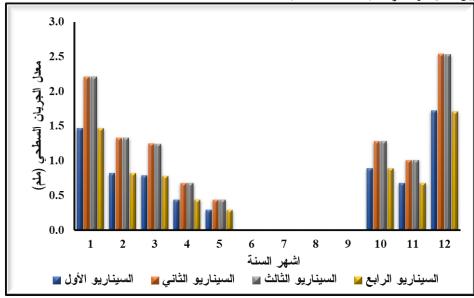

الشكل (21) التباين الزماني الشهري لمعدل التبخر المحتمل المتوقع في حوض الأزرق خلال فترة الدراسة. المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام المصدر: من عمل الباحث بالاعتماد على نتائج Texcel

وبالنسبة للتباين المكاني للمعدل السنوي المتوقع للتبخر الفعلي في الأحواض الفرعية لحوض الأزرق لعام 2030م، فقد اتضح عدم وجود تأثير للتطبيق السيناربوهات التراكمية للتغير المناخي المختلفة على التباين المكاني لمعدل التبخر الفعلي المتوقع؛ حيث أظهرت كافة سيناربوهات التغير المناخي أنّ حوض وادي راجل كان أكثرها قيمة، حيث تراوح فيه معدل التبخر الفعلي المتوقع ما بين 45.5 و66.61 ملم سنويًا. في حين كان حوضي وادي القشة والرتم هما الأقل؛ فقد تراوح فهما معدل التبخر الفعلي المتوقع ما بين 15 و18.8 ملم سنويًا. وعلى النقيض من التباين المكاني لمعدل التبخر الفعلي المتوقع كان التباين المكاني لمعدل التبخر المعتمل، فقد كان حوض وادي القشة هو أكثر الأحواض الفرعية لحوض الأزرق في قيمة معدل التبخر المحتمل المتوقع، التي تراوحت فيه ما بين 1621.2 ملم سنويًا و1733 ملم سنويًا، كما أظهرت نتائج تطبيق السيناربوهات أنّ حوض وادي راجل هو الأقل في معدل التبخر المحتمل في كافتها، حيث تراوح فيه ما بين 1621.2 و1690 ملم سنويًا. ويظهر الشكل (22) و(23) التباين المكاني السنوي لمعدلي التبخر الفعلي والمحتمل المتوقعان بين الأحواض الفرعية لحوض الأزرق.

الشكل (22) التباين المكاني السنوي لمعدل التبخر الفعلي المتوقع بين الأحواض الفرعية لحوض الأزرق. ArcGIS 10.6 المصدر: من عمل الباحث بالاعتماد على نتائج ArcSwat 2012 باستخدام 10.6

الشكل (23) التباين المكاني السنوي لمعدل التبخر المحتمل المتوقع بين الأحواض الفرعية لحوض الأزرق. ArcGIS 10.6 المصدر: من عمل الباحث بالاعتماد على نتائج ArcSwat 2012باستخدام ArcGIS 10.6

2. الجربان السطحى.

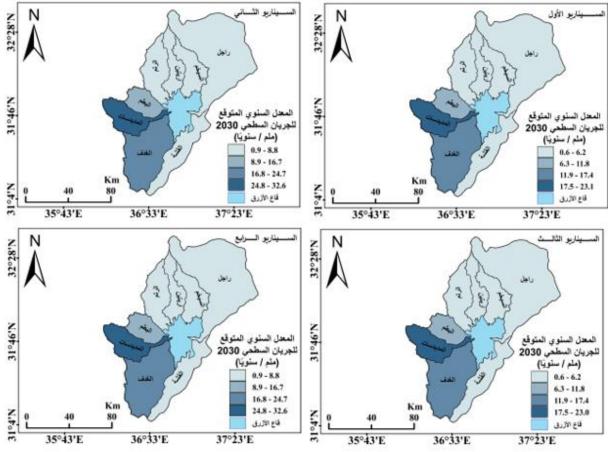

يُعدُّ التنبؤ بالجربان السطحي من الأمور بالغة الأهمية، حيث تسهم في معرفة مدى الجدوى من إنشاء المشاريع المائية المستقبلية، كمشاريع الحصاد المائي بما فيه الحفائر الترابية والسدود الإسمنتية. ويتأثر الجربان السطحي بالتغير في درجات الحرارة وكميات الهطول المطري، وعليه فإنّه هو المتأثر الأول من التغير المناخي، سواء تأثرًا إيجابيًا من حيث زيادة كمية الجربان السطحي، أو سلبيًا من حيث تناقص كميته. وقد أظهر تطبيق سيناريوهات التغير المناخي المتربان السطحي بالتغير المناخي المتوقع، فقد بلغت أقصى قيمة له أثناء السيناريو الثاني بقيمة بلغت 10.75 ملم سنويًا بفارق بسيط جدًا عن قيمته في السيناريو الرابع والذي بلغ فيه 10.74 ملم سنويًا، في حين كان السيناريو الثالث هو الأقل بقيمة بلغت 7.08 ملم سنويًا. وببين الجدول (7) قيم معدل الجربان السطحي المتوقع المستقبلي في حوض الأزرق بناء على سيناريوهات التغير المناخي المراكمية.

الجدول (7) معدل الجربان السطحي المتوقع لحوض الأزرق بناء على السيناربوهات التراكمية للفترة بين 2020م و2030م.

= ti		///	معدل الجربان السطحي	المتوقع
الرقم	السيناريوهات	المعدل المطري المتوقع (ملم سنويًا)	(ملم سنوبًا)	%
1	الأول	89.8	7.1	7.9
2	الثاني	109.8	10.75	9.8
3	الثالث	89.9	7.08	7.9
4	الرابع	109.8	10.74	9.8

المصدر: من عمل الباحث بالاعتماد على نتائج ArcSwat 2012

وأما بالنسبة للتباين الزمني الشهري للجربان السطعي المتوقع؛ فقد أظهر تطبيق سيناربوهات التغير المناخي التراكمية أنّ شهر كانون الأول كان الأكثر معدلًا للجربان السطعي من بقية أشهر السنة في كافة السيناربوهات، في حين كانت أشهر الصيف (حزيران، تموز، آب) وشهر أيلول هي الأقل في معدل الجربان السطعي المتوقع، وذلك بحكم انعدام الهطول المطري خلالها. ويوضح الشكل (24) التباين الزماني الشهري لمعدل الجربان السطعي المتوقع في حوض الأزرق خلال فترة الدراسة (2020 – 2030).



الشكل (24) التباين الزماني الشهري لمعدل الجربان السطحي المتوقع في حوض الأزرق خلال فترة الدراسة.

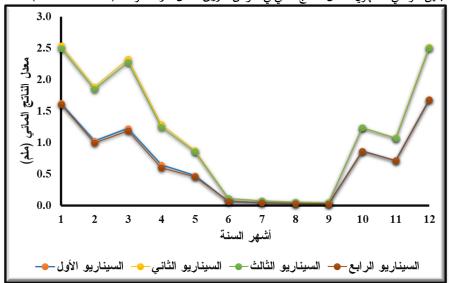
المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام

وفيما يتعلق بالتباين المكاني لمعدل الجريان السطى المتوقع بين الأحواض الفرعية لحوض الأزرق، فقد أظهر تطبيق سيناربوهات التغير المناخي التراكمية عدم وجود اختلاف في التباين المكاني للأحواض الفرعية في معدل الجريان السطى المستقبلي عن الواقع الحالي، فقد استمرت الأحواض الفرعية الجنوبية الغربية في صدارة الأحواض الفرعية في معدل الجريان السطى المستقبلي، وهذه الأحواض هي: الغدف المديدسسات والبطم، وقد كان حوض وادي المديدسسات هو الأكثر من بينها في معدل الجريان السطى المتوقع، والذي تراوح ما بين 17.5 و32.6 ملم سنويًا. كما أظهرت النتائج المستسقاة من السيناربوهات تماثل قيم معدل الجريان السطى في الأحواض الفرعية لحوض الأزرق بين كل من السيناربو الأول والثالث، والسيناربو الثاني والرابع، ويعود هذا التماثل في القيم إلى أنّ

السيناريو الأول والثالث بلغ فهما معدل الأمطار السنوي 89.9 ملم سنويًا، وفي السيناريو الثاني والرابع 109.8 ملم سنويًا، أي أنّ هنالك تماثل في قيم المعدل المطري أثناء فترة الدراسة. ويظهر الشكل (25) التباين المكاني السنوي لمعدل الجريان السطحي السنوي المتوقع بين الأحواض الفرعية لحوض الأزرق.

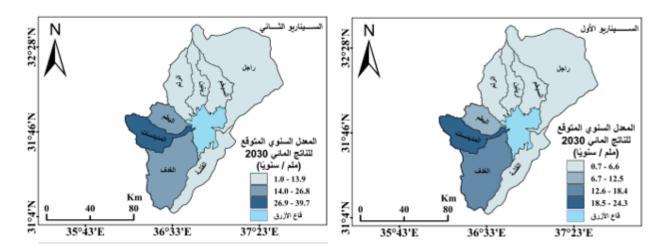
الشكل (25) التباين المكاني السنوي لمعدل الجربان السطحي المتوقع بين الأحواض الفرعية لحوض الأزرق. المصدر: من عمل الباحث بالاعتماد على نتائج ArcSwat 2012باستخدام 10.6

3. الناتج المائي.


وكما أسفلت سابقًا؛ فإنَّ الناتج المائي هو بمثابة المحصلة النهائية للماء، أي أنّها المياه الزرقاء والتي تشير إلى إجمالي الجربان السطحي والباطني والتغذية الجوفية (السوالمة، 2008). وقد أظهر تطبيق أسلوب سيناربوهات التغير المناخي التراكمية بأنَّ السيناربو الثاني كان أكثر السيناربوهات في معدل الناتج المائي المتوقع، على الرغم من أنَّ هذا السيناربو يشهد أكبر كمية للتبخر الفعلي في هذا الحوض إلا أنّ كمية المياه الهاطلة كبيرة بالمقارنة مع السيناربوهات عليه، تعمل على تعويض الفاقد بواسطة التبخر، حيث بلغ فيه 12.9% من إجمالي المعدل المطري الهاطل المتوقع على حوض الأزرق. كما أظهرت السيناربوهات أن السيناربو الثالث ذو أقل قيمة في معدل الناتج المائي المتوقع خلال فترة الدراسة. ويبين الجدول (8) قيم معدل الناتج المائي المتوقع المستقبلي في حوض الأزرق بناء على سيناربوهات التغير المناخي التراكمية.

الجدول (8) معدل الناتج المائي المتوقع لحوض الأزرق بناء على السيناربوهات التراكمية للفترة بين 2020م و2030م.

معدل الناتج المائي المتوقع		المال المال المالية و (ما سينوا)	m (())	= 11
%	(ملم سنوبًا)	المعدل المطري المتوقع (ملم سنويًا)	السيناريوهات	الرقم
9.5	8.52	89.8	الأول	1
12.9	14.14	109.8	الثاني	2
9.3	8.34	89.9	الثالث	3
12.7	13.97	109.8	الرابع	4


المصدر: من عمل الباحث بالاعتماد على نتائج ArcSwat 2012


وأما فيما يتعلق بالتباين الزماني الشهري للناتج المائي في حوض الأزرق، فقد أوضح تطبيق سيناربوهات التغير المناخي التراكمية أنّ شهر كانون الثاني كان أكثر شهور السنة في معدل الناتج المائي الشهري المتوقع، وذلك في السيناربو الثاني والثالث بقيمة بلغت 2.5 ملم، في حين كان شهر كانون الأول هو أكثر شهور السنة في معدل الناتج المائي الشهري المتوقع، وذلك في السيناربو الأول والرابع بقيمة بلغت 1.7 ملم. كما أظهرت السيناربوهات أنّ أشهر الصيف وبداية الخريف (أيلول) كانت أقل شهور السنة في معدل الناتج المائي؛ وذلك بسبب عدمية الهطول المطري خلالها وارتفاع درجات الحرارة. ووضح الشكل (26) التباين الزماني الشهري لمعدل الناتج المائي في حوض الأزرق خلال فترة الدراسة (2020 – 2030).

الشكل (26) التباين الزماني الشهري لمعدل الناتج المائي المتوقع في حوض الأزرق خلال فترة الدراسة. المصدر: من عمل الباحث بالاعتماد على نتائج SWAT وباستخدام Excel

وفيما يتعلق بالتباين المكاني لمعدل الناتج المائي المتوقع بين الأحواض الفرعية لحوض الأزرق، فقد أظهر تطبيق سيناريوهات التغير المناخي التراكمية عدم وجود اختلاف في التباين المكاني للأحواض الفرعية في معدل الناتج المائي المستقبلي عن الواقع الحالي، كما قد توافق التباين المكاني لمعدل الناتج المائي للأحواض الفرعية الغربية في صدارة الأحواض الفرعية المائي للأحواض الفرعية الغربية في صدارة الأحواض الفرعية في معدل الناتج المائي المستقبلي، وهذه الأحواض هي: الغدف المديدسسات والبطم، وقد كان حوض وادي المديدسسات هو الأكثر من بينها في معدل الناتج المائي المتوقع والذي تراوح ما بين 18.5 و 39.7 ملم سنويًا. كما أظهرت النتائج المستسقاة من السيناريوهات تماثل قيم معدل الناتج المائي المتوقع في الأحواض الفرعية لحوض الأزرق بين كل من السيناريو الأول والثالث، ويعود هذا التماثل في القيم إلى أنّ السيناريو الأول والثالث بلغ فيهما معدل المطر السنوي المعتوقع بين الأحواض الفرعية لحوض الأزرق.

الشكل (27) التباين المكاني السنوي لمعدل الناتج المائي المتوقع بين الأحواض الفرعية لحوض الأزرق. ArcGIS 10 المصدر: من عمل الباحث بالاعتماد على نتائج ArcSwat 2012باستخدام

الخاتمة والتوصيات

أوضحت الدراسة مدى الجدوى في الاعتماد على نموذج تقييم التربة والمياه في دراسة الظروف الهيدرولوجية سواء الحالية أو المستقبلية، وذلك بفضل تمثيلها ذي الكفاءة العالية، مما أسهم في بناء تصور لتلك الظروف، وبناء قاعدة بيانات هيدرولوجية ومناخية للأحواض؛ بهدف إجراء ما يعرف بإدارة الموارد المائية، من حيث محاولة الاستفادة القصوى من الموارد المائية المتاحة الحالية في مختلف نواحي استعمالاتها. بالإضافة إلى مواجهة الآثار المحتملة على الموارد المائية جراء التغير المنائية من حيث بناء مشاريع مائية قصيرة أو طويلة الأجل لتنميتها.

حيث أظهرت نتائج الدراسة أن حوض الأزرق المصنف ضمن الأحواض الجافة في الأردن، يتلقى سنوبًا من كميات الهطول المطري ما تبلغ 99.8 ملم سنوبًا. إلا أنّ هذا المجموع المطري لحوض الأزرق يتباين بين أحواضه الفرعية، فقد كان حوضي وادبي راجل المديدسسات هما الأكثر تلقيًا للهطول المطري من الأحواض الأخرى، حيث بلغ فيه ما بين 85.3 و101.6 ملم سنوبًا. كما أوضحت نتائج الدراسة أنّ أعلى معدل للتبخر الفعلي كان أثناء شهر آب، في حين كان أعلى معدل للتبخر الكامن (المحتمل) أثناء شهر تموز. كما اتضح أنّ حوض وادي راجل هو أكثر أحواض أودية الأزرق في معدل التبخر الفعلي (الحقيقي)، في حين كان حوض وادي القشة أكثر الأحواض في معدل التبخر المحتمل (الكامن). وأظهرت الدراسة أيضًا أن أكثر شهور السنة إنتاجًا للماء أو ما يعرف بالعائد المائي وهي ناتج مختلف العمليات التي تؤثر على كميات المياه الهاطلة على الحوض سواء بالتبخر أو التسرب وغيرها كان شهري كانون الأول والثاني. كما كانت الأحواض الجنوبية والجنوبية الغربية لحوض الأزرق ذات المعدل الأعلى في العائد المائي لعام 2019م.

أما بالنسبة لأثر التغير المناخي على الظروف الهيدرولوجية، فقد أظهرت نتائج الدراسة أن 72.3% من مجمل الأمطار الهاطلة على حوض الأزرق خلال الفترة الممتدة بين 2020 و2030 يذهب سدىً بواسطة عملية التبخر الفعلي، وذلك أثناء السيناريو الثاني وهي الأقل، حيث بلغت أعلى قيمة للتبخر الفعلي في حوض الأزرق خلال فترة الدراسة 75.8% أثناء السيناريو الثالث. وعلى النقيض من نتائج الدراسة فيما يتعلق بالتبخر الفعلي، فقد كان السيناريو الثاني ذو القيمة الأكثر في العائد المائي بنسبة بلغت 14.14% من مجمل الأمطار الهاطلة على حوض الأزرق، في حين كان السيناريو الثالث الأقل في نسبة العائد المائي، والتي بلغت 8.34% من إجمالي مجموع الأمطار.

وفي ضوء نتائج الدراسة؛ فإنّها توصي بتكثيف الاعتماد على نموذج تقييم التربة والمياه في عمليات النمذجة الهيدرولوجية للأحواض سواء الحالية أو المستقبلية؛ لما أثبته من فاعلية وكفاءة في النتائج المعطاة في الإدارة المائية للأحواض، حيث تسهم في معرفة الأماكن الأنسب والأفضل لإنشاء المشاريع المائية مثل مشاريع الحصاد المائي كالسدود الإسمنتية والترابية.

المصادروالمراجع

أبو عجمية، س.(1999). التحولات السكانية و التغيرات البيئية في واحة الأزرق: دراسة أنثر وبولوجيه ميدانية. رسالة ماجستير غير منشورة، جامعة اليرموك، الأردن. دائرة الأرصاد الجوبة الأردنية. 2019. بيانات مناخية، عمان، الأردن.

الزغول، م. (2016). إدارة الموارد المائية وإمكانيات الحصاد المائي في حوض الزرقاء باستخدام تقنيات الاستشعار عن بعد ونظم المعلومات الجغرافية، أطروحة دكتوراه غير منشورة، الجامعة الأردنية، الأردن.

سلطة المصادر الطبيعية. (1997). خرائط جيولوجية 1:50000، عمان، الأردن.

السوالمة، م.(2008). كفاءة الناتج المائي في أحواض وادي العرب ووالدي كفرنجة ووادي شعيب. رسالة ماجستير غير منشورة، جامعة مؤتة، الأردن.

طارق، ا. (2018). تقييم المصادر المائية في حوض وادي عربة الشمالي باستخدام نظم المعلومات الجغرافية وأدوات تقييم المياه والتربة، أطروحة دكتوراه غير منشورة، الجامعة الأردنية، الأردن.

العرود، إ. (2002). مبادئ الجغرافيا الطبيعية. (ط1). عمان: دار الشروق.

العمري، ع.(2017). تقييم الموارد المائية في حوض وادي شعيب باستخدام النماذج الهيدرولوجية وتقنيات الاستشعار عن بعد، ونظم المعلومات الجغرافية. رسالة ماجستير غير منشورة، جامعة اليرموك، الأردن.

الغميض، ع.(2019). أثر التغير المناخي المتوقع على الموارد المائية ضمن أربعة أحواض مائية في الأردن باستخدام نظم المعلومات الجغرافية والاستشعار عن بعد. أطروحة دكتوراه غير منشورة، الجامعة الأردنية، الأردن.

غيث، د. (2010). تقييم تدهور الأراضي في منطقة قضاء الضليل باستخدام المرئيات الفضائية. رسالة ماجستير غير منشورة، الجامعة الأردنية، الأردن. المركز الجغرافي الملكي.(1997). خرائط طبوغرافية مقياس 1:50000، عمان، الأردن.

الملكاوي، ع. (1997). دراسة التصحر في حوض الأزرق باستخدام تقنيات الاستشعار عن بعد ونظام المعلومات الجغرافية. رسالة ماجستير غير منشورة، جامعة آل الدرت الأدن

النوايسة، س. 2017. تحليل وتصنيف الخصائص المورفومترية لأحواض أودية قاع الأزرق باستخدام نظام المعلومات الجغرافي لأغراض دعم خطط إدارته البيئية المتكاملة. دراسات-العلوم الإنسانية، 44(4)، 63-83.

وزارة البيئة الأردنية. (2009). التقرير السنوى، عمان، الأردن.

وزارة الزراعة الأردنية.(1994). المشروع الوطني لخارطة التربة واستعمالات الأراضي، المستوى الأول، عمان، الأردن.

وزارة المياه والرى الأردنية. (2019). بيانات مناخية، عمان، الأردن.

References

Abdulla, F.,& Al-Omari, A.(2008). Impact of climate change on the monthly runoff of a semi-arid catchment: Case study Zarqa River Basin (Jordan). *Journal of Applied Biological Sciences*, 2 (1), 40 –50.

Abu-allban, M, El-Naqa, A., Jaber, M.F, & Hammouri, N. (2015). Water scarcity impact of climate change in semi-arid regions: a case study in Mujib basin, Jordan. *Arabian Journal of Geosciences*, 8(2), 951-959.

Al-Hassani, I. (2018). Potential Impacts of Climate Change on Surface Water Resources of Amman-Zarqa Basin using Downscaled Regional Circulation Model and Soil Water Assessment Tool. Unpublished Master Dissertation, Hashemite University. Zarqa- Jordan.

Al-Husban. Y. (2017). Inverse Distance Weighting (IDW) for Estimating Spatial Variation of Monthly and Annually Rainfall in Azraq Basin during the monitor Period (1980-2016). *Al-Hussein Bin Talal University Journal of Research*, 3(2), 361 – 374.

Bell, S. (2015). *Implementing The Soil And Water Assessment Tool For The Puyallup River Watershed Of Washington State: A Feasibility Assessment.* Unpublished Master Dissertation, The Evergreen State College, Washington, USA.

Hallouz, F., Meddi, M., Maha, G., Alirahmani, S., & Keddar, A. (2017). Modeling of Discharge and Sediment Transport through the SWAT Model in the Basin Of Harraza (Northwest of Algeria). *Water Science*, 32(1), 79-88.

https://earthexplorer.usgs.gov/

https://sentinel.esa.int/web/sentinel/home

Ibrahim, K.,& El-Naqa, A. (2018). Inverse geochemical modeling of groundwater salinization in Azraq Basin. Jordan. *Advances in Geosciences*, 11(10), 236-251.

Jaber, M. (2012). Assessment of climate change impacts on water resources in Mujib Basin (central Jordan). Unpublished

- Master Dissertation, Hashemite University. Zarqa- Jordan.
- Mosbahi, M., Bendabdallah, S., & Boussema, M. (2013). Assessment of soil erosion risk using swat model. *Arabian Journal of Geosciences*, 6(10), 4011-4019.
- Oroud. I. (2015). Water Budget Assessment for a Typical Watershed in the Karak Plateau, Jordan. *Jordan Journal of Earth and Environmental Sciences*, 7(2), 369 –381.
- Sangpal, R. (2011). Upendra Kulkarni, Yogesh M. Nandurkar, An assessment of physic-chemical properties to study the pollution potential of Ujjani reservoir, Solapur district, India, *ARPN Journal of Agricultural and Biological Science*, Asian Research Publishing Network (ARPN).
- Train R. (1979). Quality criteria for water, U.S. Environmental Agency, Washington D.C., Castlehe House publication Ltd.
- Venkatesharaju, K. (2010). Ravikumar, P.; Somashekar, R., Prakash, Kl., Physico-Chemical and Bacteriological Investigation on the River Cauvery of Kollegal Stretch in Karnataka, Kathmandu University. *Journal of Science, Engineering and Technology*, 6(I), 50-59.
- Weib, M. & Menzel, L. (2008). A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. *Advances in Geosciences*, 18(1),15-23.
- World Health Organization, (2002). Drinking Water Guidelines and Standard, Geneva.
- Ziyadi, M., Jawad L. A., Almukhtar M. & Pohl T. (2015). Day's goby, *Acentrogobius dayi Koumans*, 1941 (Pisces: Gobiidae) in the desert Sawa Lake, south-west Baghdad, Iraq, Marine Biodiversity Records, Cambridge University Press.