تقدير التبخر من سطح خليج العقبة باستخدام الحزمة الحرارية 10 للقمر الصناعي لاندسات 8
DOI:
https://doi.org/10.35516/hum.v50i6.304الكلمات المفتاحية:
تقدير التبخر، درجة حرارة سطح الماء، المرئيات الحرارية، خليج العقبةالملخص
الأهداف: تعدُّ درجة حرارة السطح والتبخر من العوامل الجيوفيزيائية المهمة بسبب ارتباطهما الوثيق بتوازن الطاقة والدورة الهيدرولوجية بين السطح والغلاف الجوي. تهدف الدراسة تقدير درجة حرارة السطح ومعدلات التبخر من خليج العقبة باستخدام معادلة دالتون.
المنهجية: استُخدِمَ النطاق الحراري 10 على متن لاندسات 8 لاسترجاع درجة الحرارة الاشعاعية، وجرى تصحيح تأثير الغلاف الجوي على درجة حرارة السطح المسترجعة باستخدام معادلة انتقال الإشعاع. وقد جرى دمج درجة الحرارة المسترجعة مع بيانات الأرصاد الجوية القريبة من السطح لتقدير التبخر اليومي من خليج العقبة باستخدام معادلة دالتون.
النتائج: أظهرت النتائج أن أعلى درجة حرارة سجلت في شهر آب بلغت 27.8 درجة سيلسيوس، بينما سجلت أدنى درجة حرارة عند 16.7 درجة سيلسيوس في شهر كانون ثاني. أشارت الحسابات إلى أن التبخر اليومي تراوح بين 2.06 ملم / يوم في تشرين ثاني إلى 5.54 ملم / يوم في حزيران.
الخلاصة: يساهم كل من التبخر العالي والكميات الضئيلة من مدخلات المياه العذبة في ارتفاع نسبة الملوحة في خليج العقبة مقارنة بالبحار المفتوحة والمحيطات.
التنزيلات
المراجع
Ahmed, A. (1999). Estimation of Lake Evaporation Using Meteorological Data and Remote Sensing: A Case Study of Lake Naivasha, Cental Rift Valley Kenya. ITC.
Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of irrigation and drainage engineering, 133(4), 380-394.
Al-Subhi, A. M. (2012). Estimation of evaporation rates in the southern Red Sea based on the AVHRR sea surface temperature data. J King Abdulaziz Univ Mar Sci, 23(1), 77-89.
Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology, 212, 198-212.
Bras, R. L. (1990). Hydrology: an introduction to hydrologic science. (No Title).
Brutsaert, W. (1982). Evaporation into the Atmospheric. Netherland: Reidel Publishing Company.
Cristobal, J., Jimenez-Munoz, J., Prakash, A., Mattar, C., Skokovic, D., & Sobrino, J. (2018). An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band. Remote Sensing, 10, 431. https://doi.org/10.3390/rs10030431.
Curran, P. J. (1988). Principles of Remote Sensing. Longman Group Ltd.
Dembélé, M., Ceperley, N., Zwart, S. J., Salvadore, E., Mariethoz, G., & Schaefli, B. (2020). Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies. Advances in Water Resources, 143, 103667. https://doi.org/10.1016/j. advwatres.2020.103667
Evans, R., Hulbert, S., Murrihy, E., Bastiaanssen, W. M. R., & Molloy, R. (2009). Using satellite imagery to measure evaporation from storages–solving the great unknown in water accounting. In Irrigation and Drainage Conference.
Faysash, D., & Smith, E., (1999). Simultaneous land surface temperature-emissivity retrieval in the infrared split window. Journal of Atmosphere and Ocean Technology, 16, 1673–1689.
Foken, T., & Foken, T. (2017). Modeling of the Energy and Matter Exchange. Micrometeorology, 207-243. https://link.springer.com/chapter/10.1007/978-3-540-74666-9_5
Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., & Cristobal, J. (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and remote sensing letters, 11(10), 1840-1843. https://doi.org/10.1109/LGRS.2014.2312032
Jiménez‐Muñoz, J. C., & Sobrino, J. A. (2003). A generalized single‐channel method for retrieving land surface temperature from remote sensing data. Journal of geophysical research: atmospheres, 108(D22). https://doi.org/10.1029/2003JD003480
Jimenez-Munoz, J.C., Cristobal, J., Sobrino, J.A., Soria, G., Ninyerola, M., & Pons, X. (2009). Revision of the single channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data, EEE trans. Geoscience Remote Sensing, 47, 339–349.
Käfer, P. S., Rolim, S. B. A., Iglesias, M. L., da Rocha, N. S., & Diaz, L. R. (2019). Land surface temperature retrieval by LANDSAT 8 thermal band: applications of laboratory and field measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2332-2341. https://doi.org/10.1109/JSTARS.2019.2913822
Kustas, W., & Anderson, M. (2009). Advances in thermal infrared remote sensing for land suruface modeling. Agricultural and Forest Meteorology, 149, 2071–2081.
Melesse, A. M., Abtew, W., & Dessalegne, T. (2009). Evaporation estimation of Rift Valley Lakes: comparison of models. Sensors, 9(12), 9603-9615. https://doi.org/10.3390/s91209603
Oroud, I. M. (2001a). A new formulation of evaporation temperature dynamics of saline solutions. Water Resources Research, 37, 2513–2520.
Oroud, I. M. (2001). Dynamics of evaporation from saline water bodies. Journal of Geophysical Research: Atmospheres, 106(D5), 4695-4701.
Oroud, I. M. (2019). Evaporites: Relative humidity control of primary mineral facies revisited. Hydrological Processes, 33, 395-404. https://doi.org/10.1002/hyp.13334
Oroud, I. M. (2019b). The annual surface temperature patterns across the Dead Sea as retrieved from thermal images. Arabian Journal of Geosciences, 12, 695.
Oroud, I. M. (2019c) The utility of thermal satellite images and land-based meteorology to estimate evaporation from large lakes. Journal of Great Lakes Research, 45(4), 703-714. https://doi.org/10.1016/j.jglr.2019.05.004
Oroud, I. M. (2020). Spatial and temporal surface temperature patterns across the Dead Sea as investigated from thermal images and thermodynamic concepts. Theoretical and Applied Climatology, 142(1-2), 569-579. https://doi.org/10.1007/s00704-020-03343-9
Oroud, I. M., & Balling Jr, R. C. (2021). The utility of combining optical and thermal images in monitoring agricultural drought in semiarid Mediterranean environments. Journal of Arid Environments, 189, 104499. https://doi.org/10.1016/j.jaridenv.2021.104499
Oroud, I. M. (2022). Derivation of spatially distributed thermal comfort levels in Jordan as investigated from remote sensing, GIS tools, and computational methods. Theoretical and Applied Climatology, 148(1-2), 569-583. http://dx.doi.org/10.1007/s00704-022-03951-7
Qin, Z., Karnieli, A., & Berliner, P. (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22, 3729–3746.
Salisbury, J. W., & D'Aria, D. M. (1992). Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote sensing of Environment, 42(2), 83-106.
Torbick, N., Ziniti, B., Wu, S., & Linder, E. (2016). Spatiotemporal lake skin summer temperature trends in the Northeast United States. Earth Interactions, 20(25), 1-21.
Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., Zhao, S. (2015) An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing, 7, 4268–4289. https://doi.org/10.3390/rs70404268
Yang, J., Duan, S. B., Zhang, X., Wu, P., Huang, C., Leng, P., & Gao, M. (2020). Evaluation of seven atmospheric profiles from reanalysis and satellite-derived products: Implication for single-channel land surface temperature retrieval. Remote Sensing, 12(5), 791. https://doi.org/10.3390/rs12050791
Yu, X., Guo, X., & Wu, Z. (2014). Land surface temperature retrieval from Landsat 8 TIRS: comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6, 9829–9852. https://doi.org/10.3390/rs6109829
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 دراسات: العلوم الإنسانية والاجتماعية

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.
##plugins.generic.dates.accepted## 2022-12-22
##plugins.generic.dates.published## 2023-11-30

